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Omega-3 fatty acids have been proposed as an adjuvant treatment option in psychiatric disorders. Given their other health
benefits and their relative lack of toxicity, teratogenicity and side effects, they may be particularly useful in children and in
females of child-bearing age, especially during pregnancy and postpartum. A comprehensive mechanistic understanding of their
effects is needed. Here we report translational studies demonstrating the phenotypic normalization and gene expression effects
of dietary omega-3 fatty acids, specifically docosahexaenoic acid (DHA), in a stress-reactive knockout mouse model of bipolar
disorder and co-morbid alcoholism, using a bioinformatic convergent functional genomics approach integrating animal model
and human data to prioritize disease-relevant genes. Additionally, to validate at a behavioral level the novel observed effects on
decreasing alcohol consumption, we also tested the effects of DHA in an independent animal model, alcohol-preferring (P) rats, a
well-established animal model of alcoholism. Our studies uncover sex differences, brain region-specific effects and blood
biomarkers that may underpin the effects of DHA. Of note, DHA modulates some of the same genes targeted by current
psychotropic medications, as well as increases myelin-related gene expression. Myelin-related gene expression decrease is a
common, if nonspecific, denominator of neuropsychiatric disorders. In conclusion, our work supports the potential utility of
omega-3 fatty acids, specifically DHA, for a spectrum of psychiatric disorders such as stress disorders, bipolar disorder,
alcoholism and beyond.
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Introduction

‘First do no harm ’
–Hippocratic Oath

There is a strong need for better treatments, with less side
effects, for stress, mood and alcohol use disorders. Natural
compounds may offer a source for such treatments, but have
been in general insufficiently studied in preclinical models,
and a molecular understanding is lacking. Omega-3 fatty
acids (eicosapentaenoic acid and docosahexaenoic acid
(DHA)) are essential fatty acids, with DHA being the final
metabolic pathway compound. They have been speculated to
have had an evolutionary role in the development of the brain
in higher organisms,1 and their relative depletion compared
with proinflammatory omega-6 fatty acids in modern Western
diets has been invoked as having a role in the pathophysiol-
ogy of multiple diseases.2 Omega-3 fatty acids, particularly
DHA, have been described to have mood- and psychosis-
modulating properties, in both preclinical models and some
clinical trials. For example, deficits in omega-3 fatty acids
have been linked to increased depression and aggression in
animal models3,4 and humans.5,6 Of note, deficits in DHA
have been reported in erythrocytes7 and in the post-mortem

orbitofrontal cortex of patients with bipolar disorder, and were
greater in those who had high vs those who had low alcohol
abuse.8 Omega-3 fatty acids have been reported to be
clinically useful in the treatment of both mood9–12 and
psychotic disorders.13–15 To date, there is no clear under-
standing of how they work in terms of psychotropic effects, or
indeed how well they actually work. Unlike most psychiatric
drugs, these natural compounds have minimal side effects,
and intriguing evidence for favorable health benefits.16–18

Particularly for children and female patients of child-bearing
age, the potential developmental and teratogenic side effects
of mood-stabilizing and antidepressant medications are a
major issue. As such, if the action of omega-3 fatty acids in
mood disorders and other related disorders could be
substantiated by understanding their mechanistic effects
and the identification of candidate molecular biomarkers for
treatment response, they would become an important con-
sideration as an addition to the therapeutic armamentarium of
psychiatrists, pediatricians and primary care doctors.

We have previously identified the circadian clock gene
D-box binding protein (DBP) as a potential candidate gene
for bipolar disorder,19 as well as for alcoholism20 and
schizophrenia,21 using a convergent functional genomics
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(CFG) approach. In follow-up work, we established mice with
a homozygous deletion of DBP (DBP knockout (KO)) as a
stress-reactive genetic animal model of bipolar disorder and
co-morbid alcoholism.22 We reported that DBP KO mice have
lower locomotor activity and blunted responses to stimulants
and they gain less weight over time. In response to a chronic
stress paradigm, the mice exhibit a diametric switch in these
phenotypes. DBP KO mice are also activated by sleep
deprivation, similar to bipolar patients, and that activation is
prevented by treatment with the mood stabilizer drug
valproate. Moreover, these mice show increased alcohol
intake following exposure to stress. Microarray studies of
brain and blood revealed a pattern of gene expression
changes that may explain the observed phenotypes. CFG
analysis of the gene expression changes identified a series of
novel candidate genes and blood biomarkers for bipolar
disorder, alcoholism and stress reactivity.

Based on the above, we decided to test omega-3 fatty
acids, specifically DHA, at a phenotypic, gene expression and
blood biomarker level, in this animal model (DBP KO mice
subjected to a chronic stress paradigm), using a case–case
design23 to increase signal detection and focus on the effects
of DHA. We also studied the effects of DHA on modulating
alcohol consumption in these mice and in an independent
animal model, the alcohol-preferring (P) rats, a well-estab-
lished model of alcoholism. Of note, there is a high degree of
co-morbidity of alcoholism with depression24,25 as well as with
bipolar disorder.26 The work described has important transla-
tional implications for understanding and validating a new
treatment approach, which follows the Hippocratic principle of
‘first do no harm’ and may favorably impact multiple co-morbid
medical and psychiatric conditions.

Materials and methods

Mouse colony. The generation of transgenic mice carrying
DBP-KO has been previously described in detail.22 DBP
(þ /�) heterozygous (HET) mice were bred to obtain
mixed littermate cohorts of DBP (þ /þ ) wild-type (WT), HET
and DBP (�/�) KO mice. Mouse pups were weaned at
21 days and housed by gender in groups of two to four in a
temperature- and light-controlled colony on reverse cycle
(lights on at 2200 h, lights off at 1000 h), with food and water
available ad libitum. DNA for genotyping was extracted by tail
digestion with a Qiagen DNeasy Tissue kit, following the
protocol for animal tissue (Qiagen, Valencia, CA, USA). The
following three primers were used for genotyping by PCR:
Dbp forward: 50-TTCTTTGGGCTTGCTGTTTCCCTGCAGA-30

Dbp reverse: 50-GCAAAGCTCCTTTCTTTGCGAGAAGTGC-30

(WT allele)
lacZ reverse: 50-GTGCTGCAAGGCGATTAAGTTGGGTAAC-30

(KO allele)
WT or KO mice, 8–12 weeks old, were used for experiments.

Animal housing, diets and treatment. All mice were
housed for at least 1 week before each experiment in a
room set to an alternating light cycle with 12 h of darkness
from 1000 to 2200 h, and 12 h of light from 2200 to 1000 h. At
the start of the experiment, male and female DBP (þ /þ ) WT
or DBP (�/�) KO mice were placed on one of the two diets:

(1) low DHA custom research diet (TD 00522, Harlan Teklad,
Madison, WI, USA), a DHA-depleting low n-3 PUFA test diet
adequate in all other nutrients (n-6/n-3 ratio of 85:1 with
6% fat as safflower oil);27 or (2) high DHA custom research
diet (TD 07708 low-DHA diet supplemented with 0.69% algal
DHA; Martek Bioscience, Columbia, MD, USA).27 The DBP
mice were fed the low-DHA diet (0% DHA) or high-DHA diet
(0.69% DHA) for 28 days. Mice and food and water were
weighed twice a week. Water was refilled once a week.

Mice were subjected to a chronic stress paradigm consist-
ing of isolation (single housing) for 28 days, with an acute
stressor (behavioral challenge tests) on day 21. The
behavioral challenge tests consisted of sequential adminis-
tration of the forced swim test (FST), tail flick test and
tail suspension test.

At 4 weeks (day 28), the mice were injected with saline to
keep handling consistent with previous work22 and their
open field locomotor activity was assessed with SMART II
video-tracking software (San Diego Instruments, San Diego,
CA, USA). After video tracking, brain and blood were
harvested as previously described22 for use in microarray
studies.

Behavioral challenge tests
Forced Swim Test. FST experiments were performed on day
21 of treatment during the dark cycle. Mice were placed one
at a time in a transparent plexiglas cylinder (64 cm
height� 38 cm diameter), with water depth of 30 cm and
temperature of 23±2 1C. Water was replaced after each
mouse tested. Time spent immobile in a 10-min interval was
scored live by two independent observers blinded to the
genotype and treatment group of the animals.

Tail flick. Immediately following the FST, the mice were dried
with paper towels and placed in the Plexiglas chamber of the
Tail Flick Analgesia Meter System (San Diego Instruments).
The mouse’s tail was placed over a window located on the
Tail Flick platform where a light beam shines to heat the tail
at a reliable, reproducible rate for 20±1 s. This test was
performed as an acute stressor, and not as a way to measure
the mouse’s response to pain, as it is confounded by the
preceding test.

Tail suspension. For the third part of the acute stress
paradigm, the mouse was suspended by its tail, B30 cm
above the ground for 5 min. This test was performed as an
acute stressor, and not as a way to measure the mouse’s
behavior, as it is confounded by the preceding tests.

Locomotion testing. A SMART II Video Tracker (VT)
system (San Diego Instruments) under normal light was
used to track the movement of mice. The mice were placed in
the lower-right-hand corner of one of four adjacent,
41� 41� 34 cm3 enclosures. Mice were not allowed any
physical contact with other mice during testing. Each
enclosure had nine predefined areas, that is, center area,
corner area and wall area. The movements of the mice were
recorded for 30 min. The enclosures were cleaned with water
after each tracking. Measures of total distance traveled,
center entry, center time, fast movement, resting time,
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average velocity (V mean) and maximum velocity (V max)
were obtained.

Clustering analysis of locomotion pattern using
GeneSpring. GeneSpring GX (Agilent Technologies, Palo
Alto, CA, USA), the most widely used, commercially
available, microarray gene expression analysis software,
was adapted for the novel use of analyzing and visualizing
phenotypic data. We have inputted the scores on phenotypic
items numbers in lieu of the usual use of gene expression
intensity numbers. All the subsequent analyses were carried
out using the same tools as for gene expression data sets, as
per the manufacturer’s instructions (www.chem.agilent.com).
Unsupervised two-way hierarchical clustering of normalized
(Z-scored) behavioral data from locomotor testing was
carried out using methodology previously described.22,28

Alcohol consumption experiments in mice. To create an
alcohol free-choice drinking paradigm, male DBP (þ /þ ) WT
or DBP (�/�) KO mice were placed in individual cages with
both a bottle of B250 ml cold tap water and a bottle of
B250 ml 10% ethanol, the customary concentration used in
mouse studies of alcohol consumption, and either a low- or
high-DHA diet for 28 days, with an acute stressor (behavior
challenge tests described above) on day 21. The amount
of ethanol and water consumed was recorded twice a week,
at which time the locations of the bottles were switched to
prevent positional bias. The bottles were refilled with fresh
solution once a week.

Alcohol consumption experiments in alcohol-preferring
(P) rats. Experimentally naive, male P rats, 4–6 months of
age at the start of the experiment, were used as subjects.
They were placed on three diets (1) low DHA custom
research diet (TD 00522, Harlan Teklad); (2) high omega-3
custom research diet (TD 07708, 0.69% DHA), similar to the
DBP KO mice experiments; and (3) normal rat diet (7001,
Harlan Teklad) for a duration of 28 days. Food and water
were available ad libitum throughout the experiments. Rats
were given continuous free-choice access in the home cage
to 15% v/v ethanol and water, the customary concentration
used in rat studies of alcohol consumption. Ethanol intake
was measured daily throughout the experiment.

Behavioral statistical analysis. Behavioral data are exp-
ressed as the mean±s.e.m. Two-way analysis of variance
was used to determine statistically significant differences for
factors of gender, genotype and diet, using SPSS statistical
software (SPSS, Chicago, IL, USA). We used a one-tailed,
two-sample independent t-tests assuming unequal variance
to determine significant differences between individual
groups. Differences between groups were considered
significant at a Po0.05 (Figure 1).

RNA extraction and microarray work. Following the
locomotor behavioral testing, mice were sacrificed by
cervical dislocation, then they were decapitated and blood
was collected. Behavioral testing and tissue harvesting were
done at the same time of day in all experiments. The brains
of the mice were harvested, stereotactically sliced, and hand

microdissected using Paxinos mouse anatomical atlas
coordinates, to isolate anatomical regions of interest—
prefrontal cortex (PFC), amygdala (AMY) and hippocampus
(HIP).21,29 Tissues were flash frozen in liquid nitrogen and
stored at �80 1C pending RNA extraction. Approximately
0.5–1 ml of blood per mouse was collected into a PAXgene
blood RNA collection tubes (BD Diagnostics, Franklin Lakes,
NJ, USA). The PAXgene blood vials were stored in �4 1C
overnight, and then at �80 1C until future processing for RNA
extraction.

Standard techniques were used to obtain total RNA
(22-gauge syringe homogenization in RLT buffer) and to
purify the RNA (RNeasy mini kit, Qiagen) from microdissected
mouse brain regions. For the whole mouse blood RNA
extraction, PAXgene blood RNA extraction kit (PreAnalytiX,
a QIAGEN/BD company, BD Diagnostics) was used, followed
by GLOBINclear-Mouse/Rat (Ambion/Applied Biosystems,
Austin, TX, USA) to remove the globin mRNA. All the methods
and procedures were carried out as per the manufacturer’s
instructions. The quality of the total RNA was confirmed using
an Agilent 2100 Bioanalyzer (Agilent Technologies). The
quantity and quality of total RNA was also independently
assessed by 260 nm ultraviolet absorption and by 260/280
ratios, respectively (Nanodrop spectrophotometer, Thermo
Scientific, Wilmington, DE, USA). Starting material of total
RNA labeling reactions was kept consistent within each
independent microarray experiment.

Equal amounts of total RNA extracted from the brain tissue
samples or blood from three mice per group was pooled for
each experimental condition and used for labeling and
hybridization to Mouse Genome 430 2.0 arrays (Affymetrix,
Santa Clara, CA, USA). The GeneChip Mouse Genome
430 2.0 Array contains over 45 000 probe sets that analyze the
expression level of over 39 000 transcripts and variants from
over 34 000 well-characterized mouse genes. Standard
Affymetrix protocols were used to reverse transcribe the
messenger RNA and generate biotinlylate cRNA (http://
www.affymetrix.com/support/downloads/manuals/expression_
s2_manual.pdf). The amount of cRNA used to prepare the
hybridization cocktail was kept constant within each experi-
ment. Samples were hybridized at 45 1C for 17 h under
constant rotation. Arrays were washed and stained using the
Affymetrix Fluidics Station 400 and scanned using the
Affymetrix Model 3000 Scanner controlled by GCOS soft-
ware. All sample labeling, hybridization, staining and scanning
procedures were carried out as per the manufacturer’s
recommendations.

Quality control. All arrays were scaled to a target intensity
of 1000 using Affymetrix MASv 5.0 array analysis software.
Quality control measures including 30/50 ratios for
glyceraldehyde 3-phosphate dehydrogenase and b-actin,
scaling factors, background and Q values were used.

Microarray data analysis. Data analysis was performed
using Affymetrix Microarray Suite 5.0 software (MAS v5.0).
Default settings were used to define transcripts as present
(P), marginal (M) or absent (A). A comparison analysis
was performed for DBP KO mice on high-DHA diet, using
DBP KO mice on low-DHA diet as the baseline. ‘Signal’,
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‘Detection’, ‘Signal Log Ratio’, ‘Change’ and ‘Change
P-value’ were obtained from this analysis. An empirical
P-value threshold for change of Po0.0025 was used. Only
transcripts that were called Present and that were
reproducibly changed in the same direction in two
independent experiments were analyzed further.

Gene identification. The identities of transcripts was
established using NetAFFX (Affymetrix), and confirmed by
cross-checking the target mRNA sequences that had been
used for probe design in the Affymetrix Mouse Genome 430
2.0 arrays GeneChip with the GenBank database. Probe sets
that did not have a known gene are labeled ‘EST’ and their
accession numbers kept as identifiers.

Convergent Functional Genomics analyses
Databases. We have established in our laboratory
(Laboratory of Neurophenomics, IU School of Medicine)
manually curated databases of all the human gene
expression (postmortem brain, blood), human genetic

(association, linkage) and animal model gene expression
studies published to date on psychiatric disorders. These
constantly updated large databases have been used in our
CFG cross-validation (Figure 2).

Human genetic evidence (linkage, association). To
designate convergence for a particular gene, the gene had
to map within 10 cM (see ref. 19 for detailed discussion) of a
microsatellite marker for which at least one published study
showed evidence of genetic linkage or a positive association
study for the gene itself was reported in the literature (for
bipolar disorder, depression, alcoholism, stress and anxiety).
The University of Southampton’s sequence-based integrated
map of the human genome (The Genetic Epidemio-
logical Group, Human Genetics Division, University of
Southampton: http://cedar.genetics.soton.ac.uk/public_html/)
was used to obtain cM locations for both genes and
markers. The sex-averaged cM value was calculated and
used to determine convergence to a particular marker. For
markers that were not present in the Southampton database,
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Figure 1 Effects of docosahexaenoic acid (DHA) on stressed mice behavior: DBP (þ /þ ) wild-type (WT) and DBP (�/�) knockout (KO) mice on a diet either high or low
in DHA were subjected to a chronic stress paradigm consisting of isolation (single housing) for 28 days, with an acute stressor (behavioral challenge tests, including
forced swim test) at day 21.On day 28, video-tracking software was used to measure locomotion (total distance traveled, in centimeters) during a 30-min period in open field.
Two-factor analysis of variance (ANOVA) was done for genotype and diet. Additionally, one-tail t-tests with *Po0.05 are depicted.
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the Marshfield database (Center for Medical Genetics,
Marshfield, WI, USA: http://research.marshfieldclinic.org/
genetics) was used with the NCBI (National Center for
Biotechnology Information) Map Viewer website to evaluate
linkage convergence.

Human gene expression evidence (post-mortem brain,
blood). Information about our candidate genes was
obtained using GeneCards, the Online Mendelian
Inheritance of Man database (http://ncbi.nlm.nih.gov/entrez/
query.fcgi?db¼OMIM), as well as database searches using
PubMed (http://ncbi.nlm.nih.gov/PubMed) and various
combinations of keywords (gene name, bipolar, depression,
alcoholism, stress, anxiety, brain, blood, lymphocytes). In
addition to our own blood biomarker data for mood
disorders,30 we also cross-matched with data for human
blood biomarkers for hallucinations and delusions,31 as such
symptoms occur in dissociative states related to stress
and anxiety.

Mouse genetic evidence (quantitative trait loci (QTLs),
transgenic). To search for mouse genetic evidence—QTLs
or transgenic—for our candidate genes, we utilized the
MGI_3.54–Mouse Genome Informatics (Jackson Laboratory,
Bar Harbor, ME, USA) and used the search menu for mouse
phenotypes and mouse models of human disease/abnormal
behaviors, using the following subcategories: abnormal
emotion/affect behavior and abnormal sleep pattern/
circadian rhythm, addiction and drug abuse. To designate
convergence for a particular gene, the gene had to map
within 10 cM of a QTL marker for the abnormal behavior, or a
transgenic mouse of the gene itself displayed that behavior.

Animal model gene expression evidence (brain,
blood). Manually curated databases, developed in our lab,
of published gene expression studies in animal models of
bipolar disorder, depression, alcoholism, stress and anxiety
were used for cross-matching with our list of genes changed
in expression by DHA in the DBP KO mice (data from studies
published by our own group received 1 point, whereas
studies published by other groups received 0.5 points).

Convergent Functional Genomics (CFG) scoring. Only
genes reproducibly changed in expression in the same
mouse tissue (PFC, AMY, HIP, blood), in the same direction,
in two independent experiments, were analyzed further. The
six external cross-validating lines of evidence (three animal
model, three human) were: animal model genetic data,
animal model brain gene expression data, animal model
blood gene expression data, human genetic data, human
brain gene expression data and human blood gene
expression data (see Figure 2). These lines of evidence
received a maximum of 1 point each (for animal model
genetic data, 0.5 points if it was QTL, 1 point if it was
transgenic; for human genetic data, 0.5 points if it was
linkage, 1 point if it was association). Thus, the maximum
possible CFG score for each gene was 6. It has not escaped
our attention that other ways of weighing the scores of line of
evidence may give slightly different results in terms of
prioritization, if not in terms of the list of genes per se.

Nevertheless, we feel this simple scoring system provides a
good separation and prioritization of genes and blood
biomarkers that may be disease relevant, which is our
stated focus.

Pathway analyses. Ingenuity 8.0 (Ingenuity Systems,
Redwood City, CA, USA) was employed to analyze the
molecular networks, biological functions and canonical
pathways of the DHA-modulated genes, as well as identify
which genes modulated by DHA are also the target of
existing drugs.

Results

Effects of DHA on mood-related behavioral measures in
DBP KO mice
Activity levels. DBP (þ /þ ) WT and DBP (�/�) KO mice on
a diet either low or high in DHA were subjected to a chronic
stress paradigm consisting of isolation (single housing) for 28
days, with an acute stressor (behavioral challenge tests,
including FST) at day 21. On day 28, we measured
locomotion in open field. Two- factor analysis of variance
was carried out (genotype� diet) for FST and Open Field
Locomotion.

The FST is a standard test used to measure mood state and
response to antidepressant medications in rodents. In female
mice (Figure 1), we observed a significant decrease in
immobility in the depressed-like WT mice, and an increase
in immobility in the manic-like KO mice, on high-DHA diet
compared with low-DHA diet. In other words, DHA supple-
mentation seemed to normalize mood state, acting as a
mood-stabilizing agent. A slight trend toward reducing
immobility in WT male mice was also observed.

Open Field Locomotion is a test that is used as a surrogate
for mood state, by extrapolation from human behaviors, with
higher locomotion corresponding to higher mood, and lower
locomotion to lower mood. In male mice (Figure 1), we
observed a significant decrease in locomotion in the manic-
like KO mice, and a trend to increased locomotion in the
depressed-like WT mice, on high-DHA diet compared with
low-DHA diet. Again, DHA supplementation seemed to
normalize mood state. Similar trends that did not reach
significance were observed in female mice.

Two independent behavioral measures related to mood
were normalized by DHA treatment, with interesting gender
differences observed. The FST was more significantly
changed in female mice, and the open field locomotion in
male mice. Similar gender-related differences in behavior
have also been reported in other animal models of mood
disorders,32 and may be reflective of human gender differ-
ences in mood phenotypes.33,34

PhenoChipping. An unsupervised two-way hierarchical
clustering of the mouse open field locomotor behavioral
data measures (phenes) using GeneSpring was carried out22

(Supplementary Figure S1). Male stressed (ST) DBP KO
mice on the high-DHA diet and male ST DBP KO mice on the
low-DHA diet clustered into two distinct groups. Similar to our
previous results for male ST DBP KO vs non-ST DBP KO
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male mice,22 Resting Time was the phene most different
between male ST DBP KO mice on high- vs low-DHA diet,
being increased in the high-DHA diet group. Center Time
(time spent in the center quadrant of the open field), was
decreased in mice on the high- vs low-DHA diet. A decrease
in Center Time may correlate with a decrease in risk-taking
behavior or increased anxiety, as mice generally avoid the
potentially dangerous, center area of an open field. Female
mice did not separate into two distinct clusters.

Food intake. Food is a hedonic stimulus in mice, and the
high-DHA diet may be more appetitive than the low-DHA diet
because of higher fat content. Total food intake displayed a
minimal trend toward increase in high-DHA vs low-DHA diet,
irrespective of genotype. The weight changes were in a
similar direction, with the notable exception of female DBP
WT mice where there was less increase in weight despite
increased food intake (Supplementary Figure S2).

Gene expression effects of omega-3 fatty acids in DBP
KO mice
Top genes. At the top of our list for disease-relevant genes
modulated by DHA in female mice brain (Tables 1 and 2 and
Figure 3) are genes such as GSK3B (in PFC), DRD2 and
PPP1R1B/DARRPP-32 (in the AMY) and GRIA2 (in HIP).
GSK3B (glycogen synthase kinase 3b) has consistent
signals in genome-wide association studies of bipolar
disorder.35 GSK3B expression is decreased in mouse PFC
by DHA, whereas it is increased in post-mortem human brain
in depression.36 Of note, one of the gold standard mood-
stabilizing medications for bipolar disorder, lithium, is a
GSK3B inhibitor.37 DRD2 (dopamine receptor 2) is a main
target for numerous antipsychotic medications (Table 5), and
PPP1R1B/DARPP-32 (protein phosphatase 1, regulatory
(inhibitor) subunit 1B/dopamine- and cAMP-regulated

phosphoprotein, 32 kDa) is at the nexus of signaling
pathways by antidepressants and other psychotropic
drugs.38 GRIA2 (glutamate receptor, ionotropic, AMPA2) is
associated with bipolar disorder,39 and has been reported to
be increased in expression in human post-mortem brain from
bipolars40 and from suicides,41 whereas DHA decreases the
expression in mouse HIP.

At the top of our list for disease-relevant genes modulated
by DHA in male mice brain (Tables 1 and 2 and Figure 3) are
genes such as FOS, GABRA1, MBP (in HIP) and PTGDS (in
HIP and PFC). FOS (FBJ osteosarcoma oncogene) is an
immediate response gene involved in response to stress and
inflammation. FOS is decreased in the mouse PFC by DHA,
an effect in opposite direction to the increase seen in post-
mortem brains of bipolar subjects,42 and in blood cells of
subjects with stress disorders.43,44 GABRA1 (g-aminobutyric
acid (GABA) A receptor, subunit a1) is associated with bipolar
disorder.45,46 It is decreased in expression in brains from
animal models of alcoholism and stress, whereas DHA
increases its expression in DBP mouse HIP. PTGDS
(prostaglandin D2 synthase; brain) is associated with anxi-
ety,47 and is decreased in expression in human post-mortem
brain from bipolars48 as well as in animal models of anxiety49

and stress,50 whereas DHA increases its expression in the
PFC and HIP of DBP KO mice.

Last but not least, MBP (myelin basic protein) is associated
with bipolar disorder, and is decreased in expression in human
post-mortem brain from bipolars51 and from suicides,41

whereas DHA increases its expression in mouse HIP.
Interestingly, a whole series of other myelin-related genes
were increased in expression by DHA in DBP male mice
(CNP, MOBP, PLP1, MOG) and female mice (MAL, PLP1).
Myelin-related gene expression decrease is a common, if
nonspecific, denominator of neuropsychiatric disorders,51,52

and is modeled by the non-DHA-treated DBP KO mice.22

To our knowledge, DHA is the only compound to date to

Animal Model
Brain Evidence

Animal model
blood evidence

Candidate
Gene/

Biomarker

Human Genetic
(Linkage or

Association) Evidence

Human Postmortem
Brain Evidence

Sensitivity Specificity

Human Blood 
Evidence

Animal Model Genetic 
(QTL or Transgenic) 

Evidence

Aimal Model Studies

Convergent Functional Genomics Analyses

Human Studies

Figure 2 Convergent functional genomics (CFG). Bayesian integration of multiple animal model and human lines of evidence to prioritize disease-relevant genes.
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demonstrate such a powerful broad effect on myelin-related
genes, and potentially reverse this pathology.

Sex differences and similarities at gene and pathway
levels. There are profound sex differences, that is, there is
little overlap, at individual gene levels, between the changes
induced by DHA in males and in females. For example, in
HIP, only five genes are changed in the same direction in
males and females: PTTG1 and ADI1 (decreased by DHA)
and SCD, HBA-A1 and HBB-B1 (increased by DHA). PTTG1
(pituitary tumor transforming gene 1) is also decreased in all
three male brain regions analyzed (PFC, AMY and HIP).
PTTG1 is an oncogene involved, among other things,
in pituitary tumors. Its downregulation by DHA is indicative
of potential anticancer benefits of DHA treatment that merit
future exploration. However, at a pathway level, there is
more overlap between males and females. For example, two
of the five top five canonical pathways in HIP (glutamate
receptor signaling, GABA receptor signaling) are shared
between males and females, although different genes in
these pathways are changed in each sex (Table 3b).
Inflammation-related pathways are prominent in the PFC,
and signaling pathways (cyclic adenosine monophosphate
in females and circadian rhythm in males) in the AMY
(Tables 3a and b).

Circadian clock genes are also being modulated by DHA,
with PER3 (period homolog 3) being decreased in expression
in the AMY of males, and RORB (RAR-related orphan
receptor b) decreased in expression in PFC of females.
Of note, we have previously reported evidence for genetic
association of RORB with bipolar disorder in a pediatric
bipolar cohort.53

Blood biomarkers. RAB27B (from AMY), and CAP1,
CAPZB, GNG2, KLF9, NDUFS5, SSX2IP and VPS13A
(from HIP) are co-regulated in the same direction in brain
and blood of DBP female mice by DHA (Table 4a). For male
mice, TFRC (from PFC), CD24A and FTL1 (from AMY),
GLUL, LIMD2, PSME4 and TTR (in HIP) are co-regulated in
the same direction in brain and blood by DHA (Table 4b).

Figure 3 Top candidate genes changed in DBP knockout (KO) stressed (ST)
mice on high- vs low-docosahexaenoic acid (DHA) diet. (a) Female mice and
(b) male mice.

Table 3 Ingenuity pathway analysis of the genes changed in DHA-treated
mice: analysis of all differentially expressed genes in (a) female mice and (b)
male mice

Pathways P-value Ratio

(a)
Top canonical pathways, female PFC (n¼66 genes)

Primary immunodeficiency signaling 2.59E�08 6/63 (0.095)
B-cell development 1.41E�07 5/37 (0.135)
Communication between innate and
adaptive immune cells

2.49E�04 4/107 (0.037)

Autoimmune thyroid disease signaling 6.39E�04 3/61 (0.049)
Systemic lupus erythematosus signaling 1.52E�03 4/163 (0.025)

Top canonical pathways, female AMY (n¼150 genes)
cAMP-mediated signaling 3.54E�07 10/161 (0.062)
G-protein-coupled receptor signaling 6.51E�07 11/222 (0.05)
Relaxin signaling 9.52E�06 8/151 (0.053)
Cardiac b-adrenergic signaling 4.27E�04 6/142 (0.042)
Protein kinase A signaling 5.61E�04 9/318 (0.028)

Top canonical pathways, female HIP (n¼103 genes)
Glutamate receptor signaling 2.67E�04 4/70 (0.057)
Polyamine regulation in colon cancer 2.62E�03 2/22 (0.091)
GABA receptor signaling 2.49E�02 2/55 (0.036)
Mitotic roles of polo-like kinase 3.27E�02 2/62 (0.032)
TR/RXR activation 7.64E�02 2/99 (0.02)

(b)

Top canonical pathways, male PFC (n¼77 genes)
CCR5 signaling in macrophages 2.98E�03 3/93 (0.032)
Clathrin-mediated endocytosis signaling 2.52E�02 3/169 (0.018)
IL-8 signaling 3.04E�02 3/188 (0.016)
BMP signaling pathway 3.36E�02 2/80 (0.025)
Pathogenesis of multiple sclerosis 3.49E�02 1/9 (0.111)

Top canonical pathways, male AMY (n¼59 genes)
Circadian rhythm signaling 2.16E�03 2/35 (0.057)
Neuroprotective role of THOP1 in
Alzheimer’s disease

4.16E�03 2/54 (0.037)

Glycine, serine and threonine metabolism 2.48E�02 2/150 (0.013)
Glycerophospholipid metabolism 4.55E�02 2/192 (0.01)
RAR activation 4.96E�02 2/181 (0.011)

Top canonical pathways, male HIP (n¼ 352 genes)
Aldosterone signaling in epithelial cells 1.97E�05 9/97 (0.093)
Glutamate receptor signaling 7.12E�04 6/70 (0.086)
GABA receptor signaling 1.51E�03 5/55 (0.091)
RAR activation 2.22E�03 9/181 (0.05)
14-3-3-mediated signaling 2.89E�03 7/116 (0.06)

Abbreviations: AMY, amygdala; BMP, bone morphogenetic protein; cAMP,
cyclic AMP; CCR5, chemokine (C–C motif) receptor 5; DHA, docosahexaenoic
acid; GABA, g-aminobutyric acid; HIP, hippocampus; IL, interleukin; PFC,
prefrontal cortex; RAR, retinoic acid receptor; RXR, retinoid X receptor; THOP1,
thimet oligopeptidase 1; TR, thyroid hormone receptor.
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These genes warrant further studies in human clinical popu-
lations as potential gender-specific peripheral biomarkers of
DHA treatment response.

In addition, a number of other genes are changed in
expression by DHA in DBP mouse blood in opposite direction
to that seen in human blood in mood disorders and stress
disorders (Supplementary Tables S1 and S2). Although
not changed in the same direction in the DBP mouse brain,
at least in the limited numbers of regions we have assayed so
far, they may nevertheless be viable human biomarkers of the
therapeutic effects of DHA, upon further study and validation.
Notably, one of these candidate markers is SLC6A4 (solute
carrier family 6 (neurotransmitter transporter, serotonin),
member 4), decreased in expression by DHA in female DBP
mouse blood.

Drugs that exert similar effects to DHA. A number of
DHA-responsive genes identified by us in mice are
modulated by existing drugs (Table 5), notably
antipsychotics, benzodiazepines, calcium channel blockers
and estrogens in females, respectively valproic acid and
ketamine in males. Those classes of medications have a
history of mood-modulating effects, use and abuse in bipolar
and co-morbid disorders. Recent work has also shown that
lithium can modulate DHA metabolism.54

Effects of DHA on alcohol consumption in two
independent animal models: DBP KO mice and
alcohol-preferring P rats
DBP KO mice on high-DHA diet drink less alcohol than
DBP KO mice on low DHA. The high rate of co-morbidity
between bipolar disorder and alcoholism in humans55 is
reflected in our DBP KO mice animal model. We had
previously shown that male DBP KO mice subjected to the
chronic isolation stress paradigm consume more ethanol
than the control DBP WT mice subjected to stress.22 We
have now tested if a high-DHA diet would impact the alcohol
consumption of these DBP KO mice compared with a low-
DHA diet. In two separate analyses, one from a 2-week
experiment and one from a 4-week experiment, we found
that DHA significantly reduces alcohol consumption
(Figure 4). No significant differences in water consumption
were observed (data not shown), which shows that mice are
showing a preference for alcohol, and not simply drinking
more fluids.

P rats on high-DHA diet drink less alcohol than P rats on
low-DHA diet. We were able to reproduce our findings in a
well-established, independent animal model of alcohol
consumption, the alcohol-preferring P rats. These rats are
also subjected to single housing, which may induce chronic
stress. Additionally, for these experiments, we did not
just look at extremes of diet in terms of DHA content, but
also used a normal control diet, with an intermediate content
of DHA. A dose-dependent effect was observed, where
alcohol-preferring P rats on a diet high in DHA drank
significantly less alcohol over a 14-day period than did
P rats on a normal control diet, and rats on a diet low in
DHA (Figure 5).L
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Table 5 DHA-responsive genes in our data set that are the targets of existing drugs

(a) Females

Gene symbol (name) Type(s) Drug(s) CFG
score

PFC
GSK3B (glycogen synthase kinase 3 b) Kinase Enzastaurin 5.0
KCNMA1 (potassium large conductance
calcium-activated channel, subfamily M,
a member 1)

Ion channel Tedisamil 3.5

AMY
DRD2 (dopamine receptor D2) G-protein-coupled

receptor
Paliperidone, risperidone, buspirone, bifeprunox, iloperidone,
blonanserin, asenapine, pardoprunox, ocaperidone,
abaperidone, SLV-314, RGH-188, rotigotine, opipramol,
chloropromazine, metoclopramide, sulpiride, meloxicam,
amantadine, trifluoperazine, fluphenazine, pimozide,
clozapine, haloperidol, fluoxetine/olanzapine, fluphenazine
decanoate, thiothixene, amitriptyline/perphenazine,
haloperidol decanoate, molindone, trimethobenzamide

5.0

NOS1 (nitric oxide synthase 1) (neuronal) Enzyme GW 273629, omega-N-methylarginine 4.5
ALDH1A1 (aldehyde dehydrogenase 1
family, member A1)

Enzyme Disulfiram, chlorpropamide 3.5

ESR1 (estrogen receptor 1) Ligand-dependent
nuclear receptor

17-a-ethinylestradiol, fulvestrant, b-estradiol, estradiol 17-b-
cypionate, estrone, estradiol valerate, 3-(4-methoxy)phenyl-4-
((4-(2-(1-piperidinyl)ethoxy)phenyl)methyl)-2H-1-benzopyran-
7-ol, bazedoxifene, estradiol valerate/testosterone enanthate,
TAS-108, ethinyl estradiol/ethynodiol diacetate, estradiol
acetate, esterified estrogens, estradiol cypionate/
medroxyprogesterone acetate, conjugated estrogens/
meprobamate, estradiol/norethindrone acetate, synthetic
conjugated estrogens

3.5

GABRD (g-aminobutyric acid (GABA)
A receptor, d)

Ion channel Pagoclone, alphadolone, SEP 174559, tracazolate,
sevoflurane, isoflurane, gaboxadol, felbamate, etomidate,
muscimol, halothane, fluoxetine/olanzapine, eszopiclone,
temazepam, zolpidem, lorazepam, olanzapine, clonazepam,
zaleplon, secobarbital, phenobarbital, pentobarbital, D 23129,
desflurane, methoxyflurane, enflurane, pregnenolone

3.5

PDE7B (phosphodiesterase 7B) Enzyme Dyphylline, nitroglycerin, aminophylline, anagrelide, milrinone,
dipyridamole, tolbutamide, theophylline, pentoxifylline

1.0

SCN4B (sodium channel,
voltage-gated, type IV, b)

Ion channel Riluzole 1.0

HIP
GRIA2 (glutamate receptor, ionotropic,
AMPA 2)

Ion channel Talampanel, Org 24448, LY451395, tezampanel 5.0

GABRB3 (g-aminobutyric acid
(GABA) A receptor, b 3)

Ion channel Methohexital, aspirin/butalbital/caffeine, aspirin/butalbital/
caffeine/codeine, pagoclone, alphadolone, SEP 174559,
acetaminophen/butalbital/caffeine, sevoflurane, isoflurane,
gaboxadol, isoniazid, felbamate, etomidate, muscimol,
halothane, fluoxetine/olanzapine, amobarbital, atropine/
hyoscyamine/phenobarbital/scopolamine, acetaminophen/
butalbital, eszopiclone, mephobarbital, hyoscyamine/
phenobarbital, acetaminophen/butalbital/caffeine/codeine,
butabarbital, temazepam, zolpidem, lorazepam, olanzapine,
clonazepam, zaleplon, secobarbital, butalbital, phenobarbital,
pentobarbital, thiopental, D 23129, desflurane,
methoxyflurane, enflurane, pregnenolone

4.5

CACNA2D1 (calcium channel, voltage-
dependent, a 2/d subunit 1)

Ion channel Amlodipine/valsartan/hydrochlorothiazide, amlodipine/
telmisartan, bepridil, amlodipine, pregabalin

1.0

IFNGR2 (interferon g receptor 2 (interferon
g transducer 1))

Transmembrane
receptor

Interferon g-1b 1.0

(b) Males

PFC
COL6A2 (collagen, type VI, a 2) Other Collagenase clostridium histolyticum 1.0
CCR5 (chemokine (C-C motif)
receptor 5)

G-protein-coupled
receptor

Maraviroc, vicriviroc, SCH 351125 0.5

AMY
GRIN2C (glutamate receptor, ionotropic,
N-methyl D-aspartate 2C)

Ion channel Dextromethorphan/guaifenesin, morphine/dextromethorphan,
neramexane, bicifadine, delucemine, CR 2249, besonprodil,
UK-240455, ketamine, felbamate, memantine, orphenadrine,
cycloserine, N-(2-indanyl)glycinamide, dextromethorphan

2.0
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Discussion

We conducted integrative studies of DHA treatment in animal
models as a way of validating the efficacy of DHA as a
psychotropic agent, to understand its underlying molecular
effects in the brain, and to identify potential blood biomarkers
of treatment response. Our work provides evidence on all
three counts. Moreover, it identifies a previously unsuspected
effect of DHA on decreasing alcohol consumption, which we
substantiated in two independent animal models.

DBP KO ST mice as a human disease-relevant animal
model. First, the behavioral phenomenology and inferences
from molecular changes in the DBP KO mice revealed
by our previous work22 bear broad similarities to the DSM
(Diagnostic and Statistical Manual of Mental Disorders)
criteria for bipolar disorder. Moreover, their switch in
phenotype is a cardinal aspect of the human condition.
As such, DBP KO mice are arguably one of the first
comprehensive genetic animal models of bipolar disorder to
be described, complementing earlier elegant pharma-
cological and genetic manipulations that mimic more

restricted endophenotypic aspects of the disorder.19,29,56–65

The fact that DBP is a transcription factor directly and
indirectly regulating many other genes may explain the
surprisingly comprehensive mimicry of a putative polygenic
human disorder by a single gene ablation in mouse. Some of
the genes identified may be directly regulated by DBP
through promoter binding, whereas others may be regulated
indirectly by a cascade of gene expression changes set in
motion by DBP. Moreover, DBP is a circadian clock
regulator, and an emerging body of work53,66–68

substantiates the role of clock genes in bipolar and related
disorders.

The DBP KO mice are a constitutive KO, and there is
always the possibility that compensatory changes can occur
during development that may obscure the direct effects of
DBP deletion. However, of note, this is a very good equivalent
of the human bipolar disorder genetic scenario, where most
mutations are likely constitutive rather than acquired, as
reflected in the familial inheritance of the disorder. Second,
our mice colony is on a mixed genetic background, generated
by heterozygote breeding, not on a back-crossed pure
mouse-strain background. Although this introduces epistatic

HIP
GABRA1 (g-aminobutyric acid (GABA) A
receptor, a 1)

Ion channel Methohexital, aspirin/butalbital/caffeine, aspirin/butalbital/
caffeine/codeine, pagoclone, alphadolone, SEP 174559,
acetaminophen/butalbital/caffeine, sevoflurane, isoflurane,
gaboxadol, isoniazid, felbamate, etomidate, muscimol,
halothane, fluoxetine/olanzapine, amobarbital, estazolam

5.0

GAD2 (glutamate decarboxylase 2) Enzyme Valproic acid 4.0
NR3C2 (nuclear receptor subfamily 3,
group C, member 2)

Ligand-dependent
nuclear receptor

Hydrochlorothiazide/spironolactone, fludrocortisone acetate,
drospirenone, spironolactone, eplerenone

4.0

SLC12A2 (solute carrier family 12
(sodium/potassium/chloride transporters),
member 2)

Transporter Bumetanide 4.0

KCNMA1 potassium large conductance
calcium-activated channel, subfamily M,
a member 1

Ion channel Tedisamil 3.5

ATP1A2 (ATPase, Na+/K+ transporting,
a 2 polypeptide)

Transporter Digoxin, omeprazole, ethacrynic acid, perphenazine 2.5

LPL (lipoprotein lipase) Enzyme Nicotinic acid, lovastatin/niacin 2.0
SLC1A3 (solute carrier family 1 (glial high
affinity glutamate transporter), member 3)

Transporter Riluzole 2.0

SLC6A1 (solute carrier family 6
(neurotransmitter transporter, GABA),
member 1)

Transporter Tiagabine 2.0

CHUK (conserved helix-loop-helix
ubiquitous kinase)

Kinase Methyl 2-cyano-3,12-dioxoolean-1,9-dien-28-oate 1.0

PARP1 (poly (ADP-ribose) polymerase 1) Enzyme ABT-888, INO-1001 1.0
SCN1A (sodium channel, voltage-gated,
type I, a subunit)

Ion channel Articaine/epinephrine, articaine, bupivacaine/lidocaine,
chloroprocaine, epinephrine/prilocaine, epinephrine/lidocaine,
fosphenytoin, phenytoin, prilocaine, lamotrigine, lidocaine,
riluzole

1.0

TGFB2 (transforming growth factor, b 2) Growth factor AP-12009 1.0
HTR5A (5-hydroxytryptamine (serotonin)
receptor 5A)

G-protein-coupled
receptor

Asenapine 0.5

SCN8A (sodium channel, voltage gated,
type VIII, a subunit)

Ion channel Riluzole 0.5

Abbreviations: AMY, amygdala; CFG, convergent functional genomics; DHA, docosahexaenoic acid; HIP, hippocampus; PFC, prefrontal cortex.
Ingenuity analyses of the genes that are targeted by existing drugs.

Table 5 (Continued)

(b) Males

Gene symbol (name) Type(s) Drug(s) CFG
score
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variability, it is remarkable that the phenotype remains
penetrant across generations and cohorts of mice. Again,
however, this is a better model of the human condition, which
occurs at a population level in a mixed genetic background,
than deriving conclusions from a very particular strain of mice.

Stress is an important trigger of medical and mental illness
episodes in humans. Acute overwhelming stress (accidents,
illness, loss of employment) on top of the chronic stress of
social isolation often precede decompensation in bipolar
patients69 and relapse into alcoholism.70 With that in mind, our
mice were subjected to a chronic stress paradigm consisting
of isolation (single housing) for 1 month, overlaid with an acute
stressor (a series of behavioral challenge tests) at the end of
the third week of isolation.

Last, the insights into overlapping phenomics, genomics
and biomarkers among bipolar, alcoholism, stress and related
disorders provided by this mouse model recapitulates in a
translational fashion to the issues of complexity, heterogene-

ity, overlap and interdependence of major psychiatric
syndromes as currently defined by DSM71 that are seen in
human patients.

The power of the CFG approach. By cross-validating our
animal model gene expression data with other lines of
evidence, including human data, we were able to extract a
shorter list of genes for which there are external
corroborating lines of evidence (human genetic evidence,
human post-mortem brain data, human blood data, animal
model QTL data) linking them to bipolar and related
disorders, thus reducing the risk of false positives. This
cross-validation also identifies candidate blood biomarkers
that are more likely directly related to the relevant disease
neuropathology, as opposed to being potential artifactual
effects related to a particular animal cohort or indirect effects
of mouse colony environment. The power of our CFG
approach is exemplified in the fact that our biomarker
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findings from previous studies have been shown to have
good predictive power in independent cohorts,30,31 a key
litmus test in our view, and one that needs to be applied more
systematically in this nascent field. The concordant
candidate blood biomarkers for response to DHA that we
identified in the current study (notably GLUL (glutamate-
ammonia ligase glutamine synthetase) in males and KLF9
(Kruppel-like factor 9) in females), as well as some of the
blood-only candidates that are changed in reverse direction
to that seen in human blood in mood and stress disorders
(notably SLC6A4 in females, as well as MBP and GLO1 in
both sexes), will need to pass that level of scrutiny in future
human studies before being deemed of unambiguous value.

From genes and biomarkers to biology. There is little co-
directional overlap between the DHA-modulated genes in
females and in males identified by us, which is somewhat
surprising and quite interesting. However, there is some
overlap at a biological pathway level and behavioral level
between males and females. A practical implication of this
work would be the need to use gender-specific biomarkers of
response to treatment. Overall, the model that is emergent
from the behavioral and gene expression data is that of DHA
acting as a mood-stabilizing agent (Figure 6).

Future studies by us and others may focus on under-
standing at a mechanistic level the novel uncovered effects on
alcohol consumption. We also need to test for potential
gender differences in the effects of DHA on alcohol
consumption.

Conclusions. Taken together, our convergent results
provide evidence that DHA modulates and is involved in
molecular networks targeted by current psychotropic
medications. They also suggest intriguing possible sex

differences for the molecular and behavioral effects of
DHA, with a more antidepressant-like profile in females and
a more antimanic-like profile in males.

The overall case for using DHA in large-scale human
clinical trials and empirical clinical practice as an adjuvant
mood-stabilizing agent and a novel potential alcoholism
treatment, particularly for co-morbid bipolar disorder and
alcoholism, is suggested and beginning to be substantiated at
a mechanistic level by our work. Other possible therapeutic
effects of DHA (in psychosis, anxiety, stress, pain and
substance abuse) are pointed at by some of our data, and
existing data in the literature. Given the genetic and biological
heterogeneity of psychiatric disorders in human populations, it
is possible, indeed likely, that not everyone will respond
equally well to DHA treatment. Gender distinctions may be
important, as our work suggests. The candidate blood
biomarkers identified by us merit hypothesis-driven follow-
up studies as markers of treatment response in a clinical
setting; i.e., to test whether they are able to stratify, predict
and differentiate early on in treatment responders from
nonresponders.
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