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Identifying blood biomarkers for mood disorders using
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There are to date no objective clinical laboratory blood tests for mood disorders. The current
reliance on patient self-report of symptom severity and on the clinicians’ impression is a rate-
limiting step in effective treatment and new drug development. We propose, and provide proof
of principle for, an approach to help identify blood biomarkers for mood state. We measured
whole-genome gene expression differences in blood samples from subjects with bipolar
disorder that had low mood vs those that had high mood at the time of the blood draw, and
separately, changes in gene expression in brain and blood of a mouse pharmacogenomic
model. We then integrated our human blood gene expression data with animal model gene
expression data, human genetic linkage/association data and human postmortem brain data,
an approach called convergent functional genomics, as a Bayesian strategy for cross-
validating and prioritizing findings. Topping our list of candidate blood biomarker genes we
have five genes involved in myelination (Mbp, Edg2, Mag, Pmp22 and Ugt8), and six genes
involved in growth factor signaling (Fgfr1, Fzd3, Erbb3, Igfbp4, Igfbp6 and Ptprm). All of these
genes have prior evidence of differential expression in human postmortem brains from mood
disorder subjects. A predictive score developed based on a panel of 10 top candidate
biomarkers (five for high mood and five for low mood) shows sensitivity and specificity for
high mood and low mood states, in two independent cohorts. Our studies suggest that blood
biomarkers may offer an unexpectedly informative window into brain functioning and disease
state.
Molecular Psychiatry advance online publication, 26 February 2008; doi:10.1038/mp.2008.11
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Introduction

Research into the biological basis of mood disorders
(bipolar disorders, depression) has, until recently,
been advancing in human and animal studies more or
less independently. The two avenues of research have
complementary strengths and weaknesses. In human
genetic studies, for example, in samples of patients
with mood disorders and their family members,
positional cloning methods such as linkage analysis,
linkage disequilibrium mapping, candidate gene
association analysis and, more recently, whole-genome
association studies are narrowing the search for the

chromosomal regions harboring risk genes for the
illness and, in some cases, identifying plausible
candidate genes and polymorphisms that will require
further validation. Human postmortem brain gene
expression studies have also been employed as a way
of trying to identify candidate genes for mood and
other neuropsychiatric disorders. In general, human
studies suffer from issues of sensitivity—the signal is
hard to detect due to noise generated by the genetic
heterogeneity of individuals and the effects of diverse
environmental exposures on gene expression and
phenotypic penetrance. In animal studies, carried
out in isogenic strains with controlled environmental
exposure, the identification of putative neurobiologi-
cal substrates of mood disorders is typically done by
modeling human mood disorders through pharmaco-
logical or genetic manipulations. Animal model
studies suffer from issues of specificity—questions
regarding direct relevance to the human disorder
modeled. Each independent line of investigation (that
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is, human and animal studies) is contributing to the
incremental gains in knowledge of mood disorders
etiology witnessed in the past decade. Yet, it is now
apparent that a lack of integration between these two
lines of investigation may constitute a missed oppor-
tunity for accelerating the pace of discovery. Our
group has developed an approach, termed convergent
functional genomics (CFG), which translationally
cross-matches animal model gene expression data
with human genetic data and human tissue data
(blood, postmortem brain), as a Bayesian strategy of
cross-validating findings, reducing the false positives
and false negatives inherent in each individual
approach, and helping identify true candidate genes,
pathways and mechanisms for neuropsychiatric dis-
orders. The CFG approach has already been applied
with some success to the study of bipolar disorders,1,2

alcoholism3 and schizophrenia.4 In the work de-
scribed in this paper, we extend this approach to
peripheral biomarker discovery efforts.

Objective biomarkers of illness and treatment
response would make a significant difference in our
ability to diagnose and treat patients with psychiatric
disorders, eliminating subjectivity and reliance of
patient’s self-report of symptoms. Blood gene expres-
sion profiling has emerged as a particularly interest-
ing area of research in the search for peripheral
biomarkers.5–10 Most of the studies to date have
focused on human lymphocytes gene expression
profiling, comparison between illness groups and
normal controls, and cross-matching with human
postmortem brain gene expression data. They suffer
from one of both of the following limitations: (1) the
sample size used in most reports so far is small. Given
the genetic heterogeneity in human samples and the
effects of illness state and environmental history,
including medications and street drugs, on gene
expression, it is questionable if they have sufficient
power to extract bona fide findings in and of
themselves, despite the variety of sophisticated
statistical methodologies used; (2) use of lymphoblas-
toid cell lines (LCLs). Passaged LCLs provide a self-
renewable source of material, and are purported to
avoid the effects of environmental exposure of cells
from fresh blood. Fresh blood, however, with pheno-
typic state information gathered at the time of harvesting,
may be more informative than immortalized lympho-
cytes, and avoid some of the caveats of Epstein–Barr
virus immortalization and cell culture passaging.

The current state of our understanding of the
genetic and neurobiological bases for bipolar mood
disorder and depression in general, and of peripheral
molecular biomarkers of illness in particular, is still
inadequate. A rate-limiting step, which we propose to
overcome, has been the lack of concerted integration
across disciplines and methodologies. The use of
such a multidisciplinary, integrative research
framework should lead to a reduction in the high
rate of inferential errors committed in studies of
complex diseases like bipolar disorder and depres-
sion. To our knowledge, no one has reported to date a

comprehensive investigation of human fresh blood
gene expression studies tied to quantitative state
measures of mood, and cross-validated that data with
blood gene expression profiling in conjunction with
brain gene expression studies in an pharmacoge-
nomic animal model relevant to bipolar disorder, as
well as integrated the findings in the context of the
available human genetic linkage/association data,
postmortem brain data and information on biological
pathways. We present data showing that such an
expanded CFG approach (Figure 2) may be fruitful for
biomarker discovery, and overcome the caveats men-
tioned above. Moreover, we project, on the basis of
our preliminary work, that panels of biomarkers
rather than single biomarkers are going to emerge as
clinically useful tools.

Materials and methods

Human subjects
We present data from three independent cohorts. One
cohort consisted of 29 subjects with bipolar I disorder,
from which the primary biomarker data were derived.
A second (replication) cohort consisted of 19 subjects
with bipolar I disorder, and a third cohort consisted of
30 subjects with psychotic disorders (schizophrenia,
schizoaffective disorder and substance-induced psy-
chosis). The diagnosis is established by a structured
clinical interview— Diagnostic Interview for Genetic
Studies (DIGS), which has details on the course of
illness and phenomenology, and is the scale used by
the Genetics Initiative Consortia for both Bipolar
Disorder and Schizophrenia.

Subjects consisted of men and women over 18 years
of age. Subjects were recruited from the patient
population at the Indianapolis VA Medical Center,
the Indiana University School of Medicine, as well as
various facilities that serve people with mental
illnesses in Indiana. A demographic breakdown is
shown in Table 1. We focused in our initial studies
primarily on an age-matched male population, due to
the demographics of our catchment area (primarily
male in a VA Medical Center), and to minimize any
potential gender-related state effects on gene expres-
sion, which would have decreased the discriminative
power of our analysis given our relatively sample
size. The subjects were recruited largely through
referrals from care providers, the use of brochures
left in plain sight in public places and mental health
clinics, and through word of mouth. Subjects were
excluded if they had significant medical or neuro-
logical illness or had evidence of active substance
abuse or dependence. All subjects understood and
signed informed consent forms detailing the research
goals, procedure, caveats and safeguards. Subjects
completed diagnostic assessments (DIGS), and then a
visual analog scale for mood (VAS Mood) at the time
of blood draw. Whole blood (10 ml) was collected in
two RNA-stabilizing PAXgene tubes, labeled with an
anonymized ID number, and stored at �80 1C in a
locked freezer until the time of future processing.
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Whole-blood (predominantly lymphocyte) RNA
was extracted for microarray gene expression
studies5,11,12 from the PAXgene tubes blood, as
detailed below.

Human blood gene expression experiments and
analysis

RNA extraction. Whole blood (2.5–5 ml) was
collected into each Paxgene tube by routine
venipuncture. Paxgene tubes contain proprietary
reagents for the stabilization of RNA. The cells from
whole blood were concentrated by centrifugation, the
pellet washed, resuspended and incubated in buffers
containing proteinase K for protein digestion. A
second centrifugation step was done to remove
residual cell debris. After the addition of ethanol for
an optimal binding condition the lysate was applied
to a silica-gel membrane/column. The RNA bound to
the membrane as the column was centrifuged and
contaminants were removed in three wash steps. The
RNA was then eluted using diethylpyrocarbonate-
treated water.

Globin reduction. To remove globin mRNA, total
RNA from whole blood was mixed with a biotinylated
Capture Oligo Mix that is specific for human
globin mRNA. The mixture was then incubated for
15 min to allow the biotinylated oligonucleotides to
hybridize with the globin mRNA. Streptavidin
magnetic beads were then added, and the mixture
was incubated for 30 min. During this incubation,
streptavidin bound the biotinylated oligonucleotides,
thereby capturing the globin mRNA on the magnetic
beads. The streptavidin magnetic beads were then
pulled to the side of the tube with a magnet, and
the RNA, depleted of the globin mRNA, was
transferred to a fresh tube. The treated RNA was
further purified using a rapid magnetic bead-based
purification method. That consisted of adding an
RNA-binding bead suspension to the samples, and
using magnetic capture to wash and elute the
GLOBINclear RNA.

Sample labeling. Sample labeling was performed
using the Ambion MessageAmp II-Biotin Enhanced
aRNA amplification kit. The procedure is briefly
outlined below and involves the following steps:

(1) Reverse transcription to synthesize first strand
cDNA is primed with the T7 Oligo(dT) primer to
synthesize cDNA containing a T7 promoter
sequence.

(2) Second strand cDNA synthesis converts the
single-stranded cDNA into a double-stranded
DNA template for transcription. The reaction
employs DNA polymerase and RNase H to
simultaneously degrade the RNA and synthesize
second strand cDNA.

(3) cDNA purification removes RNA, primers, en-
zymes and salts that would inhibit in vitro
transcription.

(4) In vitro transcription to synthesize aRNA with
Biotin–NTP Mix generates multiple copies of
biotin-modified aRNA from the double-stranded
cDNA templates; this is the amplification step.

(5) aRNA purification removes unincorporated NTPs,
salts, enzymes, and inorganic phosphate to
improve the stability of the biotin-modified aRNA.

Microarrays. Biotin-labeled aRNA were hybridized
to Affymetrix Human Genome U133 Plus 2.0
GeneChips according to manufacturer’s protocols
http://www.affymetrix.com/support/technical/manual/
expression_manual.affx. All glyceraldehyde-3-phos-
phate dehydrogenase (GAPDH) 30/50 ratios should be
less than 2.0 and backgrounds under 50. Arrays were
stained using standard Affymetrix protocols for antibody
signal amplification and scanned on an Affymetrix
GeneArray 2500 scanner with a target intensity set at
250. Present/Absent calls were determined using GCOS
software with thresholds set at default values.

Analysis. We used the subject’s mood scores at time
of blood collection, obtained from a VAS Mood scale
(Figure 1). We looked at only all or nothing gene
expression differences that are identified by Absent
(A) vs Present (P) calls in the Affymetrix MAS
software. We classified genes whose expression was
detected as Absent in the low mood subjects and
detected as Present in the high mood subjects, as
being candidate biomarker genes for elevated mood.
Conversely, genes whose expression were detected as
Present in the low mood subjects and Absent in the
high mood subjects were classified as candidate
biomarker genes for low mood.

We employed two thresholds for analysis of gene
expression differences between low and high mood
(Table 2). First, we used a high threshold, with at least
75% of subjects in the cohort showing a change in
expression from Absent to Present between low and
high mood (reflecting an at least threefold mood state-
related enrichment of the genes thus filtered). We also
used a low threshold, with at least 60% of subjects in
the cohort showing a change in expression from
Absent to Present between low and high mood
(reflecting an at least 1.5-fold mood state-related
enrichment of the genes thus filtered).

0 100 40 60 

Low Mood Moderate Mood High Mood 

Figure 1 Visual analog mood scale (VAS) scoring. At the
time of the blood draw, the subject draws a line on a 100 mm
VAS to mark where subject’s mood is at that moment in
time, compared to worst subject has ever felt (0) and best
subject has ever felt (100).
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Animal model gene expression studies
Our bipolar pharmacogenomic model consisted of
methamphetamine and valproate treatments in mice
(see Ogden et al.2 for experimental details and
analysis/categorization of gene expression data).

For the current work, we repeated that series of
experiments, to obtain blood gene expression data
also. All experiments were performed with male C57/
BL6 mice, 8–12 weeks of age, obtained from Jackson
Laboratories (Bar Harbor, ME, USA), and acclimated
for at least 2 weeks in our animal facility prior to any
experimental manipulation.

Mice were treated by intraperitoneal injection with
single-dose saline, methamphetamine (10 mg kg�1),
valproate (200 mg kg�1) or a combination of metham-
phetamine and valproate (10 and 200 mg kg�1). Three
independent de novo biological experiments were
performed at different times. Each experiment con-
sisted of three mice per treatment condition, for a
total of nine mice per condition across the three
experiments.

Mouse blood collection. Twenty-four hours after drug
administration, following the 24 h time point
behavioral test, the mice were decapitated to harvest
blood. The headless mouse body was put over a glass
funnel coated with heparin and approximately 1 ml of
blood per mouse was collected into a PAXgene blood
RNA collection tubes, BD Diagnostic (VWR.com).
Blood samples from three mice per treatment
condition were pooled. The PAXgene blood vials
were stored at �4 1C overnight, and then at �80 1C
until future processing for RNA extraction.

RNA extraction and microarray work. For the whole-
mouse blood RNA extraction, PAXgene blood RNA
extraction kit (PreAnalytiX, a Qiagen/BD company)
was used, followed by GLOBINclear–Human or

GLOBINclear–Mouse/Rat (Ambion/Applied Biosystems
Inc., Austin, TX, USA) to remove the globin mRNA.
All the methods and procedures were carried out as
per manufacturer’s instructions. The quality of the
total RNA was confirmed using an Agilent 2100
Bioanalyzer (Agilent Technologies, Palo Alto, CA,
USA). The quantity and quality of total RNA was also
independently assessed by 260 nm UV absorption
and by 260/280 ratios, respectively (Nanodrop
spectrophotometer). Starting material of total RNA
labeling reactions was kept consistent within each
independent microarray experiment.

Equal amount of total RNA extracted from pooled
blood samples was used for labeling and microarray
assays. We used Mouse Genome 430 2.0 arrays
(Affymetrix, Santa Clara, CA, USA). The GeneChip
Mouse Genome 430 2.0 array contains over 45 000
probe sets that analyze the expression level of over
39 000 transcripts and variants from over 34 000 well-
characterized mouse genes. Standard Affymetrix
protocols were used to reverse transcribe the messen-
ger RNA and generate biotinylate cRNA (http://
www.affymetrix.com/support/downloads/manuals/
expression_s2_manual.pdf). The amount of cRNA
used to prepare the hybridization cocktail was kept
constant intraexperiment. Samples were hybridized
at 45 1C for 17 h under constant rotation. Arrays were
washed and stained using the Affymetrix Fluidics
Station 400 and scanned using the Affymetrix Model
3000 scanner controlled by GCOS software. All
sample labeling, hybridization, staining and scanning
procedures were carried out as per manufacturer’s
recommendations.

All arrays were scaled to a target intensity of 1000
using Affymetrix MASv 5.0 array analysis software.
Quality control measures including 30/50 ratios for
GAPDH and b-actin, scaling factors, background and
Q-values were within acceptable limits.

Microarray data analysis. Data analysis was
performed using Affymetrix Microarray Suite 5.0
software. Default settings were used to define
transcripts as Present (P), Marginal (M) or Absent
(A). A comparison analysis was performed for each
drug treatment, using its corresponding saline
treatment as the baseline. ‘signal’, ‘detection’, ‘signal
log ratio’, ‘change’ and ‘change P-value’ were
obtained from this analysis. Only transcripts that
were called Present in at least one of the two samples
(saline or drug) intraexperiment, and that were
reproducibly changed in the same direction in at
least two out of three independent experiments, were
analyzed further.

Cross-validation and integration: convergent
functional genomics

Gene identification. The identities of transcripts
were established using NetAFFX (Affymetrix), and
confirmed by cross-checking the target mRNA
sequences that had been used for probe design in

Table 2 High- and low-threshold analyses in primary
bipolar cohort

Analysis Bipolar subjects (n = 29) 13
low mood and 13 high mood

High-threshold candidate
biomarker genes (changed
in X75% subjects; i.e. at
least threefold enrichment)

10/13 low mood vs 10/13
high mood A/P and P/A
analyses

Low-threshold candidate
biomarker genes (changed
in X60% subjects; i.e. at
least 1.5-fold enrichment)

8/13 low mood vs 8/13 high
mood A/P and P/A analyses

Genes are considered candidate biomarkers for high mood if
they are called by the Affymetrix MAS5 software as Absent
(A) in the blood of low mood subjects and detected as
Present (P) in the blood of high mood subjects. Conversely,
genes are considered candidate biomarkers for low mood if
they are detected as Present (P) in low mood subjects and
Absent (A) in high mood subjects.
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the Mouse Genome 430 2.0 Array GeneChip or the
Affymetrix Human Genome U133 Plus 2.0 GeneChip
with the GenBank database. Where possible,
identities of ESTs were established by BLAST
searches of the nucleotide database. A National
Center for Biotechnology Information (NCBI;
Bethesda, MD, USA) BLAST analysis of the
accession number of each probe set was done to
identify each gene name. BLAST analysis identified
the closest known gene existing in the database (the
highest known gene at the top of the BLAST list of
homologues) that could be used to search the
GeneCards database (Weizmann Institute, Rehovot,
Israel). Probe sets that did not have a known gene
were labeled ‘EST’ and their accession numbers were
kept as identifiers.

Human postmortem brain convergence. Information
about our candidate genes was obtained using
GeneCards, the Online Mendelian Inheritance of
Man database (http://ncbi.nlm.nih.gov/entrez/
query.fcgi?db = OMIM), as well as database searches
using PubMed (http://ncbi.nlm.nih.gov/PubMed) and
various combinations of keywords (gene name,
bipolar, depression, human, brain, postmortem).
Postmortem convergence was deemed to occur for a
gene if there were published reports of human
postmortem data showing changes in expression of
that gene in brains from patients with mood disorders
(bipolar disorder, depression). In terms of
concordance of direction of change in expression
between published postmortem brain data and our
human blood data, we made the assumption that
bipolar postmortem brain data reflected a depressed
phase of the illness. While this may arguably be the
case, it is nevertheless an assumption, as no
consistent objective data exist regarding the phase of
the illness when the subjects deceased, which is one
of the limitations of human postmortem brain data to
date.

Human genetic data convergence. To designate
convergence for a particular gene, the gene had to have
published positive reports from candidate gene
association studies, or map within 10 cM of a
microsatellite marker for which at least one published
study showed evidence for genetic linkage to mood
disorders (bipolar disorder or depression). The
University of Southampton’s sequence-based integrated
map of the human genome (The Genetic Epidemio-
logical Group, Human Genetics Division, University
of Southampton, http://cedar.genetics.soton.ac.uk/
public_html/) was used to obtain cM locations for both
genes and markers. The sex-averaged cM value was
calculated and used to determine convergence to a
particular marker. For markers that were not present
in the Southampton database, the Marshfield
database (Center for Medical Genetics, Marshfield,
WI, USA, http://research.marshfieldclinic.org/genetics)
was used with the NCBI Map Viewer Web site to
evaluate linkage convergence.

Convergent functional genomics analysis
scoring. Genes were given the maximum score of
2 points if changed in our human blood samples with
high-threshold analysis, and only 1 point if changed
with low threshold. They received 1 point for each
external cross-validating line of evidence (human
postmortem brain data, human genetic data, animal
model brain data and animal model blood data).
Genes received additional bonus points if changed in
human brain and blood, as follows: 2 points if
changed in the same direction, 1 point if changed in
opposite direction. Genes also received additional
bonus points if changed in brain and blood of the
animal model, as follows: 1 point if changed in the
same direction in the brain and blood, and 0.5 point if
changed in opposite direction. Thus, the total
maximum CFG score that a candidate biomarker
gene could have was 9 (2þ 4þ2þ 1). As we are
interested in discovering blood biomarkers, and
because of caveats discussed above, we weighted
more heavily our own live subject human blood data
(if it made the high-threshold cut) than literature-
derived human postmortem brain data, human
genetic data or our own animal model data. We also
weighted more heavily the human blood–brain
concordance than the animal model blood–brain
concordance. It has not escaped our attention that
other ways of weighing the scores of line of evidence
may give slightly different results in terms of
prioritization, if not in terms of the list of genes per
se. Nevertheless, we feel that this empirical scoring
system provides a good separation of genes based on
our focus on identifying human blood candidate
biomarkers.

Pathway analysis. Ingenuity Pathway Analysis 5.0
(Ingenuity Systems, Redwood City, CA, USA) was
used to analyze the biological functions categories of
the top candidate genes resulting from our CFG
analysis (Table 5), as well as employed to identify
genes in our data sets that are the target of existing
drugs (Supplementary Table 2S).

Results

We have conducted gene expression profiling studies
in peripheral whole blood (see ‘Materials and meth-
ods’ for methodological details) from a primary cohort
of 29 human subjects with bipolar I disorder (27 men,
2 women; Table 1). In total, 13 had low self-reported
mood scores (below 40) on the VAS Mood scale
(Figure 1), and 13 had high self-reported mood scores
(above 60). Three of them had intermediate mood
scores (between 40 and 60). We have used their mood
scores at the time of blood collection as a way of
narrowing the field and identifying candidate bio-
marker genes for mood. We have looked only at all or
nothing gene expression differences that are identi-
fied by Absent (A) vs Present (P) calls in the
Affymetrix MAS software. We classified genes whose
expression was detected as Absent in the low mood
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subjects and detected as Present in the high mood
subjects, as being candidate biomarker genes for
elevated mood state (mania). Conversely, genes whose
expression was detected as Present in the low mood
subjects and Absent in the high mood subjects are
being classified as candidate biomarker genes for low
mood state (depression) (Tables 2 and 3). It has to be
noted that it is possible that some of the genes
associated with high or low mood state may not
necessarily be involved in the induction of that state,
but rather in its suppression as part of homeostatic
regulatory networks or treatment–response mechani-
sms (similar conceptually to oncogenes and tumor-
suppressor genes).

Second, we have employed two thresholds for
analysis of gene expression differences between low
and high mood (Table 2). First, we used a high
threshold, with at least 75% of subjects in a cohort
showing a change in expression from Absent to
Present between low and high mood (reflecting an at
least threefold mood state-related enrichment of the
genes thus filtered). As psychiatric disorders are
clinically and (likely) genetically heterogeneous, with
different combinations of genes and biomarkers
present in different subgroups, we also used a low
threshold, with at least 60% of subjects in a cohort
showing a change in expression from Absent to
Present between low and high mood (reflecting an at
least 1.5-fold mood state-related enrichment of the
genes thus filtered). The high threshold will identify
candidate biomarker genes that are more common for
all subjects, with a lower risk of false positives,
whereas the lower threshold will identify genes that
are present in more restricted subgroups of subjects,
with a lower risk of false negatives. The high-threshold
candidate biomarker genes have, as an advantage, a
higher degree of reliability, as they are present in at
least 75% of all subjects with a certain mood state
(high or low) tested. They may reflect common
aspects related to mood disorders across a diverse
subject population, but may also be a reflection of the
effects of common medications used in the popula-
tion tested, such as mood stabilizers. The low-
threshold genes may have lower reliability, being
present in at least 60% of the subject population
tested, but may capture more of the diversity of genes
and biological mechanisms present in a genetically
diverse human subject population.

By cross-validating with animal model and
other human data sets (Figure 2a) using CFG, we
were able to extract a shorter list of genes for which
there are external corroborating lines of evidence
(human genetic evidence, human postmortem brain
data, animal model brain and blood data) linking
them to mood disorders (bipolar disorder, depres-
sion), thus reducing the risk of false positives.
This cross-validation identifies candidate biomarkers
that are more likely directly related to the relevant
neuropathology, as opposed to being potential artifac-
tual effects or indirect effects of lifestyle, environment
and so on.

Using our approach for analyzing at first pass our
human blood gene expression data, out of over 40 000
genes and ESTs on the Affymetrix Human Genome
U133 Plus 2.0 GeneChip, by using the high threshold,
we have ended up with 21 novel candidate biomarker
genes (13 known genes and 7 ESTs; Table 3;
Supplementary Table 3S), of which 8 had at least
one line of prior independent evidence for potential
involvement in mood disorders (that is, CFG score of
3 or above). In addition to the high threshold genes,
by using the low threshold, we have a larger list
totaling 661 genes (539 known genes and 122 ESTs;
Table 3; Supplementary Table 3S), of which an
additional 24 had at least two lines of prior indepen-
dent evidence for potential involvement in mood
disorders (that is, CFG score of 3 or above). Of
interest, four of our low-threshold candidate biomar-
ker genes (Bclaf1 and Rdx,8 Gosr2 and Wdr3442) had
been previously reported to be changed in expression
in the same direction, in LCLs from bipolar subjects.

Making a combined list of all the high-value
candidate biomarker genes identified as described
above, consisting of the high-threshold genes with at
least one other external line of evidence (n = 8) and of
the additional low-threshold genes with at least two
other external lines of evidence (n = 24) and the
low-threshold genes with prior LCL evidence (n = 4),
we end up with a list of 36 top candidate biomarker
genes for mood, prioritized based on CFG score
(Table 3).

Picking up the five top-scoring candidate biomar-
kers for high mood (Mbp, Edg2, Fzd3, Atxn1 and
Ednrb) and the five top-scoring candidate biomarkers
for low mood (Fgfr1, Mag, Pmp22, Ugt8 and Erbb3),
we have established a panel of 10 biomarkers for
mood disorder that may have diagnostic and pre-
dictive value.

To test the predictive value of our panel (to be
called the BioM-10 Mood panel), we have looked in
the cohort of 29 bipolar disorder subjects, containing
the 26 subjects (13 low mood, 13 high mood) from
which the candidate biomarker data were derived, as
well as three additional subjects with mood in the
intermediate range (self-reported mood scores be-
tween 40 and 60). We derived a prediction score for
each subject, based on the presence or absence of the
10 biomarkers of the panel in their blood GeneChip
data. Each of the 10 biomarkers gets a score of 1 if it is
detected as present (P) in the blood form that subject,
0.5 if it is detected as marginally present (M) and 0 if
it is called absent (A). The ratio of the sum of the high
mood biomarker scores divided by the sum of the low
mood biomarker scores is multiplied by 100, and
provides a prediction score. If the ratio of high
biomarker genes to low mood biomarker genes is 1,
that is, the two sets of genes are equally represented,
the mood prediction score is 1�100 = 100. The higher
the score, the higher the predicted likelihood that the
subject will have high mood. We compared the
predictive score with actual self-reported mood scores
in the primary cohort of subjects with a diagnosis of
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bipolar mood disorder (n = 29). A prediction score of
100 and above had an 84.6% sensitivity and a 68.8%
specificity for predicting high mood. A prediction score
below 100 had a 76.9% sensitivity and an 81.3%
specificity for predicting low mood (Table 4a; Figure 3a).

Additionally, we have conducted human blood gene
expression analysis in an independent cohort consist-
ing of 30 subjects with other psychotic disorders
(schizophrenia, schizoaffective disorder, substance-
induced psychosis), who also had mood state scores
obtained at the time of the blood draw. The subjects in
the psychosis cohort also had a distribution of low
(n = 9), intermediate (n = 7) and high (n = 14) mood
scores. This cohort was used as a way to verify the
predictive power of the mood state biomarker panel,
independent of a bipolar disorder diagnosis.

In the psychotic disorders cohort (n = 30), with
various psychotic disorders diagnoses, a prediction
score of 100 and above had a 71.4% sensitivity and a
62.5% specificity for predicting high mood. A
prediction score below 100 had a 66.7% sensitivity
and a 61.9% specificity for predicting low mood
(Table 4b; Figure 3b).

Moreover, we have also conducted human blood
gene expression analysis in a second independent
bipolar disorder cohort, subsequently collected, con-
sisting of 19 subjects. The subjects in the secondary
bipolar cohort had a distribution of low (n = 6),
intermediate (n = 3) and high (n = 10) mood scores.
The second bipolar cohort was used as a replication
cohort, to verify the predictive power of the mood
state biomarker panel identified by analysis of data
from the primary bipolar cohort.

In the second bipolar cohort (n = 19), a prediction
score of 100 and above had a 70.0% sensitivity and a
66.7% specificity for predicting high mood. A
prediction score below 100 had a 66.7% sensitivity
and a 61.5% specificity for predicting low mood
(Table 4c; Figure 3c).

The primary and secondary bipolar mood disorder
cohorts are a priori more related and germane to mood
state biomarkers identification, but may have blood
gene expression changes, at least in part, due to the
common pharmacological agents used to treat bipolar
mood disorders. The psychotic disorders cohort may
have blood gene expression changes related to mood
state irrespective of the diagnosis and the different
medication classes subjects with different diagnoses
are on (Table 1; Figure 2b). The psychosis cohort was
also notably different in terms of the ethnic distribu-
tion (Table 1b).

Lastly, we interrogated the MIT/Broad Institute
Connectivity Map43 with a signature query composed
of the genes in our BioM-10 Mood panel of top
biomarkers for low and high mood (Figure 4). We
wanted to see which drugs in the Connectivity Map
database have similar effects on gene expression as
the effects of high mood on gene expression, and
which drugs have the opposite effect to high mood.
As such, as part of our signature query, the five
biomarkers for high mood were considered as genesT

a
b
le

3
C

o
n

ti
n

u
e
d

G
e
n

e
sy

m
b
o
l/

n
a
m

e
E

n
tr

e
z

g
e
n

e
ID

H
u

m
a
n

b
lo

o
d

d
a
ta

H
u

m
a
n

p
o
st

m
o
rt

e
m

b
ra

in
,

ly
m

p
h

o
cy

te
s

H
u

m
a
n

b
ra

in
a
n

d
b
lo

o
d

c
o
n

c
o
rd

a
n

c
e/

c
o
d

ir
e
c
ti

o
n

a
li

ty

H
u

m
a
n

g
e
n

et
ic

li
n

k
a
g
e
/a

ss
o
c
ia

ti
o
n

B
ip

o
la

r
m

o
u

se
m

o
d

e
l

b
ra

in
2

B
ip

o
la

r
m

o
u

se
m

o
d

e
l

b
lo

o
d

C
F

G
sc

o
re

S
y
n

p
o

(s
y
n

ap
to

p
o
d

in
)

1
1
3
4
6

D
5
q
3
3
.1

B
P

4
0

P
F

C
C

at
-I

II
M

e
th

(D
)

3

T
gm

2
(t

ra
n

sg
lu

ta
m

in
as

e
2
,

C
p

o
ly

p
e
p

ti
d

e
)

7
0
5
2

D
2
0
q
1
1
.2

3
B

P
4
1

C
a
t-

II
I

M
e
th

(D
)

3

T
jp

3
(t

ig
h

t-
ju

n
ct

io
n

p
ro

te
in

3
(z

o
n

a
o
cc

lu
d

en
s

3
))

2
7
1
3
4

D
(H

T
)

1
9
p

1
3
.3

B
P

1
5

3
T

p
d

5
2

(t
u

m
o
r

p
ro

te
in

D
5
2
)

7
1
6
3

D
(H

T
)

8
q
2
1
.1

3
B

P
2
6

3
T

rp
c
1

(t
ra

n
si

e
n

t
re

c
ep

to
r

p
o
te

n
ti

a
l

c
a
ti

o
n

c
h

a
n

n
e
l,

su
b
fa

m
il

y
C

,
m

e
m

b
er

1
)

7
2
2
0

D
3
q
2
3

B
P

3
0

C
P

C
at

-I
V

V
P
A

(I
)

3

B
cl

a
f1

(B
C

L
2
-a

ss
o
ci

at
ed

tr
an

sc
ri

p
ti

o
n

fa
c
to

r
1
)

9
7
7
4

D
D

o
w

n
8

(l
y
m

p
h

o
c
y
te

s)
B

P
6
q
2
3
.3

2
G

o
sr

2
(G

o
lg

i
S

N
A

P
re

ce
p

to
r

co
m

p
le

x
m

em
b
er

2
)

9
5
7
0

D
D

o
w

n
4
2

(l
y
m

p
h

o
c
y
te

s)
B

P
1
7
q
2
1
.3

2
2

R
d

x
(r

a
d

ix
in

)
5
9
6
2

D
8

D
o
w

n
8

(l
y
m

p
h

o
c
y
te

s)
B

P
1
1
q
2
2
.3

2
W

d
r3

4
(W

D
re

p
e
a
t

d
o
m

a
in

3
4
)

8
9
8
9
1

D
D

o
w

n
4
2

(l
y
m

p
h

o
c
y
te

s)
B

P
9
q
3
4
.1

1
2

A
b
b
re

v
ia

ti
o
n

s:
H

T
,

h
ig

h
th

re
sh

o
ld

;
M

D
D

,
m

a
jo

r
d

e
p

re
ss

iv
e

d
is

o
rd

e
r;

M
E

T
H

,
m

e
th

a
m

p
h

e
ta

m
in

e
;

V
P
A

,
v
a
lp

ro
a
te

.
T

o
p

c
a
n

d
id

a
te

b
io

m
a
rk

e
r

g
e
n

e
s

fo
r

m
o
o
d

.
F

o
r

h
u

m
a
n

b
lo

o
d

d
a
ta

:
I,

in
c
re

a
se

d
in

h
ig

h
m

o
o
d

(m
a
n

ia
);

D
,

d
e
c
re

a
se

d
in

h
ig

h
m

o
o
d

(m
a
n

ia
)/

in
c
re

a
se

d
in

lo
w

m
o
o
d

(d
e
p

re
ss

io
n

).
F

o
r

p
o
st

m
o
rt

e
m

b
ra

in
d

a
ta

:
U

p
,

in
c
re

a
se

d
;

D
o
w

n
,

d
e
c
re

a
se

d
in

e
x
p

re
ss

io
n

.
F

o
r

m
o
u

se
d

a
ta

:
I,

in
c
re

a
se

d
;

D
,

d
e
c
re

a
se

d
in

e
x
p

re
ss

io
n

.

Blood biomarkers for mood disorders
H Le-Niculescu et al

10

Molecular Psychiatry



‘increased’ by high mood, and the five biomarkers for
low mood were genes ‘decreased’ by high mood. Our
interrogation revealed that sodium phenylbutyrate
exerts the most similar effects to high mood, and
novobiocin the most similar effects to low mood.

Discussion

General approach: strengths, limitations and caveats
Gene expression changes in specific brain regions and
blood from a pharmacogenomic animal model deve-
loped in our group2 were used as cross-validators to
help with the identification of potential human blood
biomarkers. Our pharmacogenomic mouse model of

relevance to bipolar disorder consisted of treatments
with an agonist of the illness/bipolar disorder-
mimicking drug (methamphetamine) and an antago-
nist of the illness/bipolar disorder-treating drug
(valproate).2 In essence, the pharmacogenomic ap-
proach is a tool for tagging genes that may have
pathophysiological relevance. As an added advan-
tage, some of these genes may be involved in potential
medication effects present in human blood data
(Figure 2). Nevertheless, this simple model, while
useful as a gene-hunting tool,44 does in all likelihood
not cover the full spectrum of changes seen in human
mood disorders. Other emerging rodent models of
bipolar disorder45–49 may be of interest for future

Human External Lines of 
Evidence

Human blood
Animal Model External 

Lines of Evidence 

Human postmortem 
brain data (1 pt.)

Animal model brain 
data (1 pt.)

Animal model blood 
data (1 pt.) 

Candidate 
Blood 

Biomarker 
For Mood 

Human genetic 
linkage/association 

data (1 pt.)

Changes due to 
psychiatric 
medications

Changes due to 
environmental 

factors   

Changes due to genetic 
inheritance

I. Genes for the illness, whose expression is modulated by medications and by interactions with the 
environment (stress, drugs, al.)

II. Genes for the illness, whose expression is modulated by medications 
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Figure 2 Prioritization (a) and conceptualization (b) of results. (a) Convergent functional genomics approach for candidate
biomarker prioritization. Scoring of independent lines of evidence (maximum score = 9 points (pts.)). (b) Conceptualization
of blood candidate biomarker genes.
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cross-comparisons and mining of our data sets in a
convergent fashion.

Human whole-blood gene expression studies were
initially carried out in a primary cohort of bipolar
subjects. We have used whole blood as a way of
minimizing potential artifacts related to sample
handling and separation of individual cell types,
and also as a way of having a streamlined approach
that lends itself well to scalability and future large-
scale studies in the field. Genes differentially ex-
pressed in low vs high mood subjects were compared
with (1) the results of our animal model brain and
blood data, as well as (2) published human genetic
linkage/association data and (3) human postmortem
brain data, as a way of cross-validating our findings,
prioritizing them and coming up with a short list of
high-probability candidate biomarker genes (Figures
2a and 5).

We have used a focused approach looking at a
discrete quantitative phenotypic item (phene), in our
case a VAS Mood. This approach avoids the issue of
corrections for multiple comparisons that would arise
if we were to look in a discovery fashion at multiple
phenes in a comprehensive phenotypic battery (Pheno-
Chipping)50 changed in relationship with all genes on
a GeneChip microarray. Larger sample cohorts would
be needed for the latter approach.

A panel of top candidate biomarker genes for mood
state identified by our approach was then used to
generate a prediction score for mood state (low vs
high mood). This prediction score was compared to
the actual self-reported mood scores from bipolar
subjects in the primary cohort (Figure 3a). We also
examined this panel of mood biomarkers and predic-
tion score in a separate independent cohort of
psychotic disorders patients for which we have gene
expression data and mood state data (Figure 3b), as
well as in a second independent bipolar cohort
(Figure 3c).

Our sample size for human subjects (n = 29 for the
primary bipolar cohort, n = 30 for the psychotic
disorders cohort and n = 19 for the secondary bipolar
cohort) is relatively small, but comparable to the size

of cohorts for human postmortem brain gene expres-
sion studies.51–53 We have in essence studied live
donor blood samples instead of postmortem donor
brains, with the advantage of better phenotypic
characterization, more quantitative state information
and less technical variability. Our approach also
permits repeated intrasubject measures when the
subject is in different mood states, which is an area
of future interest and work.

It is to be noted that our experimental approach for
detecting gene expression changes relies on a single
methodology, Affymetrix GeneChip oligonucleotide
microarrays. It is possible that some of the gene
expression changes detected from a single biological
experiment, with a one-time assay with this techno-
logy, are biological or technical artifacts. With that in
mind, we have designed our analyses to minimize the
likelihood of having false positives, even at the
expense of potentially having false negatives, due to
the high cost in time and resources of pursuing false
leads. For the animal model work, using isogenic
mouse strain affords us an ideal control baseline of
saline-injected animals for our drug-injected animals.
We performed three independent de novo biological
experiments, at different times, with different batches
of mice. This overall design is geared to factor out
both biological variability and technical variability. It
is to be noted that the concordance between repro-
ducible microarray experiments using the latest
generations of oligonucleotide microarrays and other
methodologies such as quantitative PCR, with their
own attendant technical limitations, is estimated to
be over 90%.54 For the human blood samples
differential gene expression analyses, which are the
results of single biological experiments, it has to be
noted that our approach used a very restrictive and
technically robust, all or nothing induction of gene
expression (change from Absent Call to Present Call).
It is possible that not all biomarker genes for mood
will show this complete induction related to state, but
rather some will show modulation in gene expression
levels, and are thus missed by our filtering. Moreover,
given the genetic heterogeneity and variable environ-
mental exposure, it is possible, indeed likely, that not
all subjects will show changes in all the biomarker
genes. Hence, we have used two stringency thresh-
olds: changes in 75% of subjects, and in 60% of
subjects with low vs high mood. Moreover, our
approach, as described above, is predicated on the
existence of multiple cross-validators for each gene
that is called a candidate biomarker (Figure 2a): (1) is
it changed in human blood, (2) is it changed in animal
model brain, (3) is it changed in animal model blood,
(4) is it changed in postmortem human brain and (5)
does it map to a human genetic linkage locus. All
these lines of evidence are the result of independent
experiments. The virtues of this networked Bayesian
approach are that if one or another of the nodes (lines
of evidence) becomes questionable/nonfunctional
upon further evidence in the field, the network is
resilient and maintains functionality. The prioritization

Table 4 BioM-10 mood panel sensitivity and specificity for
predicting mood state

Sensitivity (%) Specificity (%)

A. Primary bipolar cohort
High mood 84.6 68.8
Low mood 76.9 81.3

B. Other psychotic disorders cohort
High mood 71.4 62.5
Low mood 66.7 61.9

C. Secondary bipolar cohort
High mood 70 66.7
Low mood 66.7 61.5
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of candidates is similar conceptually to the Google
PageRank algorithm55—the more the links (lines of
evidence) to a candidate, the higher it will come up
on our priority list. As more evidence emerges in the
field for some of these genes, they will move up in the
prioritization scoring.44 Using such an approach, we
were able to identify and focus on a small number of
genes as likely candidate biomarkers, out of the over
40 000 transcripts (about half of which are detected as
Present in each subject) measured by the microarrays
we used.

A validation of our approach is the fact that our
biomarker panel showed sensitivity and specificity, of
a comparable nature, in both independent replication
cohorts (psychotic disorder cohort and secondary
bipolar cohort). Thus, our approach of using a VAS
phene50 reflecting an internal subjective experience of

well-being or distress (as opposed to more complex
and disease-specific state/trait clinical instruments),
and looking at extremes of state combined with robust
differential expression based on A/P calls and
CFG prioritization, seems to be able to identify state
biomarkers for mood, our intended goal, which
are, at least in part, independent of specific diagnoses
or medications. Nevertheless, a comparison with
existing clinical rating scales (Supplementary
Figure 1S), actimetry56 and functional neuroima-
ging,57 as well as analysis of biomarker data using
such instruments may be of high interest for future
work, as a way of delineating state vs trait issues,
diagnostic boundaries or lack thereof and informing
the design of clinical trials that may incorporate
clinical and biomarker measures of response to
treatment.

 Low Mood Biomarkers 

Subject ID Diagnosis Mood
Score

MBP EDG2 FZD3 ATXN1 EDNRB FGFR1 MAG PMP22 UGT8 ERBB3
Mood BioM

Prediction Score
174-1173 BP 27 0.0
174-1150 BP 31 12.5
174-1126 BP 24 16.7
174-1055 BP 20 25.0

Phchp023v1 BP 39 33.3
Phchp027v1 BP 38 40.0

174-1112 BP 38 50.0
174-1115 BP 40 50.0

Phchp028v1 BP 52 50.0
174-1171 BP 72 50.0
174-1197 BP 20 66.7
174-1042 BP 37 66.7
174-5002 BP 73 75.0

Phchp029v1 BP 22 100.0
174-1161 BP 29 100.0

Phchp020v1 BP 42 100.0
Phchp031v1 BP 47 100.0

174-1119 BP 73 100.0
174-1107 BP 63 150.0
174-1156 BP 72 150.0
174-1132 BP 71 175.0
174-1137 BP 39 200.0

Phchp030v1 BP 61 200.0
174-1037 BP 72 200.0
174-1130 BP 65 450.0
174-5001 BP 66 600.0
174-1193 BP 84 1000.0
174-1160 BP 72 Infinity
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High Mood Biomarkers 

Figure 3 (a) Comparison of BioM-10 mood prediction score and actual mood scores in the primary cohort of bipolar subjects
(n = 29). BP, bipolar. For mood scores: blue, low mood; red, high mood; white, intermediate mood. Mood scores are based on
subject self-report on mood visual analog scale (VAS) administered at time of blood draw. For biomarkers: A (blue), called
Absent by MAS5 analysis; P (red), called Present by MAS5 analysis; M (yellow), called Marginally Present by MAS5 analysis.
A is scored as 0, M as 0.5 and P as 1. BioM-10 mood prediction score is based on the ratio of the sum of the scores for high
mood biomarkers and sum of scores for low mood biomarkers, multiplied by 100. We have used a cutoff score of 100 and
above for high mood. Infinity denominator is 0. (b) Comparison of BioM-10 mood prediction score and actual mood scores in
an independent cohort of psychotic disorders subjects (n = 30). SZ, schizophrenia; SZA, schizoaffective disorder; SubPD,
substance-induced psychosis. (c) Comparison of BioM-10 mood prediction score and actual mood scores in a secondary
independent cohort of bipolar subjects (n=19).
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High Mood biomarkers

Diagnosis Mood
Score

MBP EDG2 FZD3 ATXN1 EDNRB FGFR1 MAG PMP22 UGT8 ERBB3
Mood BioM

Prediction Score
phchp015v1 SubPD 78
phchp033v1 SZA 38
phchp010v1 SZA 50
phchp025v1 SZ 30
phchp003v3 SZ 50
phchp024v1 SZA 50
phchp026v1 SZA 65
phchp006v2 SZA 33
phchp010v3 SZA 66
phchp021v1 SZA 39
phchp006v1 SZA 59
phchp019v1 SubPD 36
phchp022v2 SZ 15
phchp017v2 SZA 86
phchp004v1 SZA 70
phchp008v1 SZ 78
phchp009v1 SZ 55
phchp012v1 SZA 71
phchp013v1 SZA 90
phchp022v1 SZ 67
phchp014v1 SubPD 71
phchp005v1 SZA 81
phchp003v1 SZ 95
phchp010v2 SZA 56 A
phchp012v2 SZA 73
phchp018v1 SZA 76
phchp021v2 SZA 29
phchp005v2 SZA 18
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phchp016v1 SZ 38

A
A
A
A
P
P
P
M
A
P
A
A
P
A
P
A
A
A
A
A
P
A
A

P
P
P
P
A
A

A
A
P
P
P
A
P
P
P
P
P
P
P
P
P
P
P
A
A
A
P
P
P

P
P

A
P
P
A
A

A
A
A
P
A
P
P
P
P
M
P
P
A
A
P
A
P
A
A
A
P
A
P
A
P
P
P
P
P
A

A
A
A
A
A
P
A
A
A
A
P
P
A
A
P
A
P
A
A
A
P
P
A
P
A
P
M
P
A
P

A
P
A
A
A
A
A
A
A
P
A
A
P
P
A
P
A
P
P
P
P
A
P
P
A
P
P
P
A
A

P
P
A
P
P
P
P
P
P
P
P
P
P
M
P
P
P
A
A
P
P
A
A
P
P
P
P
A
A
A

M
A
P
P
A
P
P
P
A
P
P
A
P
A
P
P
P
A
A
A
P
A
A
A
A
P
A
A
A
A

A
P
P
P
P
P
P
P
P
P
A
P
P
P
P
A
A
A
A
A
P
P
A
A
P
A
A
P
A
A

A
P
P
P
P
P
P
P
P
P
P
P
A
A
P
A
P
P
P
A
P
A
P
P
A
A
M
P
A
A

A
P
A
A
M
P
P
A
A
P
P
P
P
P
A
A
A
A
A
A
A
M
P
A
A
A
M
A
A
A

0.0
25.0
33.3
50.0
57.1
60.0
60.0
62.5
66.7
70.0
75.0
75.0
75.0
80.0
100.0
100.0
100.0
100.0
100.0
100.0
125.0
133.3
150.0
150.0
150.0
200.0
225.0
250.0
Infinity
Infinity

Low Mood Biomarkers 

High Mood Biomarkers

Subject ID Diagnosis Mood
Score

MBP EDG2 FZD3 ATXN1 EDNRB FGFR1 MAG PMP22 UGT8 ERBB3
Mood BioM

Prediction Score
174-1232 BP 32 30.0

pchp045v1 BP 36 33.3
174-1278 BP 24 50.0
174-1237 BP 57 57.1
174-1216 BP 23 66.7

phchp031v2 BP 79 66.7
phchp056v1 BP 84 66.7
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174-1096 BP 83 85.7
174-1203 BP 49 100.0

phchp053v1 BP 68 100.0
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174-1258 BP 90 100.0
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174-1204 BP 81 133.3
174-1220 BP 82 133.3

phchp023v2 BP 20 166.7
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174-1255 BP 81
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Figure 3 Continued.
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Human blood gene expression changes may be
influenced by the presence or absence of both
medications and drugs of abuse. While we have
access to the subject’s medical records and clinical
information as part of the informed consent for the
study, medication noncompliance, on the one hand,
and substance abuse, on the other hand, are not
infrequent occurrences in psychiatric patients. That
medications and drugs of abuse may have effects on
mood state and gene expression is in fact being
partially modeled in our mouse pharmacogenomic
model, with valproate and methamphetamine treat-
ments, respectively. In the end, it is the association of
blood biomarkers with mood state that is the primary
goal of this study, regardless of the proximal causes,
which could be diverse (Figure 2b), and will need to
be the subject of subsequent hypothesis-driven
studies beyond the scope of this initial report. Future
studies are also needed to look at these candidate
biomarkers at a protein level, in larger cohorts of both
genders, in different age groups and in theragnostic
settings measuring responses to specific treatments/
medications.

Findings
Topping our list of candidate biomarker genes we
have five genes involved in myelination (Mbp, Edg2,
Mag, Pmp22 and Ugt8), six genes involved in growth
factor signaling (Fgfr1, Fzd3, Erbb3, Igfbp4, Igfbp6
and Ptprm) and one gene involved in light transduc-
tion (Pde6d). These genes were selected as having a

line of evidence (CFG) score of 4 or higher (Table 3).
That means, in addition to our human blood data,
these genes have at least two other independent lines
of evidence implicating them in mood disorders and/
or concordance of expression in human brain and
blood. Using this cutoff score, we ended up with 12
top genes (Figure 5), all of which have prior evidence
of differential expression in human postmortem
brains from mood disorder patients.

It is intriguing that genes that have a well-
established role in brain functioning should show
changes in blood in relationship to psychiatric
symptoms state (Figure 5, Table 3; Supplementary
Table 3S), and moreover that the direction of change
should be concordant with that reported in human
postmortem brain studies. It is possible that trait-
promoter sequence mutations or epigenetic modifica-
tions influence expression in both tissues (brain and
blood), and that state-dependent transcription factor
changes that modulate the expression of these genes
may be contributory as well. This clearly is an area
that deserves attention and mechanistic elucidation
by future hypothesis-driven research, and may point
to the need for focusing research efforts not only on
coding regions of genes of interest in psychiatric
genetics, but also on their promoter regions as well.

Our top findings suggest that genes involved in
brain infrastructure changes (myelin, growth factors)
are prominent players in mood disorders, and are
reflected in the blood profile, consistent with pre-
vious work in the field implicating neurotrophic
mechanisms in mood disorders.58–60 Myelin abnorm-
alities have emerged as a common, if perhaps
nonspecific, denominator across a variety of neurop-
sychiatric disorders.2,14,44,61–66 Of note, Mbp, our top-
scoring candidate biomarker (Figure 5), associated
with high mood state, was also identified as a top
candidate gene for bipolar disorder by a recent whole-
genome association study.15 Our findings regarding
insulin growth factor signaling changes may provide
an underpinning for the comorbidity with diabetes
and metabolic syndrome often encountered in mood
disorder patients. Whether these changes are etio-
pathogenic, compensatory mechanisms, side effects
of medications or results of illness-induced lifestyle
changes (Figure 2b) is an intriguing area for future
research.

The fact that most of the top genes identified are
associated with a low mood state (depression) as
opposed to high mood state (Figure 5; Table 3)
suggests that depression may have more of an
impact on blood gene expression changes, perhaps

rank instance id cmap name batch dose cell line score up down

1 341 sodium phenylbutyrate 31 100 ÂµM MCF7 0.512 -0.553
453 499 novobiocin 70 100 ÂµM ssMCF7 -0.5 0.651

1

-1

Figure 4 Connectivity Map interrogation of drugs that have similar gene expression signatures to that of high mood. A score
of 1 indicates a maximal similarity with the gene expression effects of high mood, and �1 indicates a maximal opposite
effects to high mood.

Both Human Postmortem Brain
Evidence and Human  

Blood Evidence

Co-directional Brain and Blood*

Human Genetic Linkage/Association
Evidence

Red-Increased in High Mood

Blue-Increased in Low Mood

6
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4

Mbp*

Edg2

Fzd3*
Pmp22 Ugt8

Pde6d* Erbb3 Igfbp4

Ptprm*

Mag

Fgfr1*
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Figure 5 Top blood candidate biomarker genes for mood
state. The lines of evidence scoring are depicted on the right
side of the pyramid.
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through a neuroendocrine–immunological axis,67 as
part of a whole-body reaction to a perceived hostile
environment.

Of note, some of the other top candidate biomarker
genes identified by our human blood work have no
previous evidence for involvement in mood disorders
other than our mapping them to bipolar genetic
linkage loci (Table 3), and thus constitute novel
candidate genes for bipolar disorder and depression.
They merit further exploration in genetic candidate
gene association studies, as well as comparison with
emerging results from whole-genome association
studies of bipolar disorder and depression. Moreover,
as more evidence accumulates in the field, all grist for
the mill for our CFG approach, and as prospective
studies are done, it is possible that the composition of
top biomarker panels for mood will be refined or
changed for different subpopulations. That being
said, it is likely that a large number of the biomarkers
that would be of use in different panels and
permutations are already present in the complete list
of candidate biomarker genes (n = 661) identified by
us using the low-threshold analysis (Supplementary
Table 2S).

The interrogation of the MIT/Broad Institute Con-
nectivity Map43 with a signature query composed of
the genes in our BioM-10 Mood panel of top
biomarkers for low and high mood revealed that
sodium phenylbutyrate exerts the most similar effects
to high mood, and novobiocin the most similar effects
to low mood (Figure 4). Sodium phenylbutyrate is a
medication used to treat hyperammonemia that also
has histone deacetylase (HDAC) properties, cell
survival and antiapoptotic effects.68 The mood-stabi-
lizer drug valproate, also an HDAC inhibitor, as well
as sodium phenylbutyrate and another HDAC inhi-
bitor, trichostatin A, were shown to induce
a-synuclein in neurons through inhibition of HDAC
and that this a-synuclein induction was critically
involved in neuroprotection against glutamate exci-
totoxicity.69 Human postmortem brain studies,52,70 as
well as animal model71 and clinical studies72 have
implicated glutamate abnormalities and HDAC mod-
ulation as therapeutic targets in mood disorders.
Novobiocin is an antibiotic drug that also has
antitumor activity and apoptosis-inducing properties,
through Hsp90 inhibition of Akt kinase,73,74 an effect
opposite to that of the valproate, trichostatin A and
sodium phenylbutyrate.75

This connectivity map analysis with our BioM-10
Mood panel genes provides an interesting external
biological cross-validation for the internal consis-
tency of our biomarker approach, as well as illustrates
the utility of the Connectivity Map for nonhypothesis-
driven identification of novel drug treatments and
interventions.

Overall, these results, taken together with our top
candidate biomarker genes results discussed above,
and with the results of a biological pathway analysis
(Table 5), are consistent with a trophicity model76,77

for genes involved in mood regulation: cell survival

and proliferation associated with high mood, and cell
shrinkage and death associated with low mood. This
perspective is of speculative evolutionary interest and
pragmatic clinical importance. Speculatively, nature
may have selected primitive cellular mechanisms for
analogous higher organism level functions: survival
and expansion in favorable, mood-elevating environ-
ments, withdrawal and death (apoptosis) in unfavor-
able, depressogenic environments. In this view,
suicide is the organismal equivalent of cellular
apoptosis (programmed cell death). Pragmatically,
our results point to a previously underappreciated
potential molecular and therapeutic overlap between
two broad areas of medicine: mood disorders and
cancer. This overlap has implications for the clinical
comorbidity of mood disorders and cancer, as well as
for empirical studies to evaluate the use of mood-
regulating drugs in cancer, and of cancer drugs in
mood disorders.

Lastly, in clinical practice there is a high degree of
overlap and comorbidity between mood disorders,
psychosis and substance abuse. Our results in bipolar
and psychotic disorder cohorts point to the issue of
heterogeneity, overlap and interdependence of major
psychiatric syndromes as currently defined by Diag-
nostic and Statistical Manual of Mental Disorders,78

and the need for a move toward comprehensive
empirical profiling and away from categorical diag-
nostic classifications.50

Conclusions

There are to date no clinical laboratory blood tests for
mood disorders. We propose, and provide proof of
principle for, a translational convergent approach to
help identify and prioritize blood biomarkers of mood
state. Our preliminary studies suggest that blood
biomarkers have the potential to offer an unexpect-
edly informative window into brain functioning and

Table 5 Biological roles

Cell death 1.43E-07–4.54E-02
Nervous system development and
function

8.31E-07–4.63E-02

Cell morphology 2.25E-05–4.63E-02
Cellular assembly and organization 4.48E-05–4.56E-02
Neurological disease 7.46E-05–4.63E-02
Cellular growth and proliferation 1.11E-04–4.89E-02
Skeletal and muscular system
development and function

1.11E-04–3.83E-02

Tissue morphology 1.12E-04–4.09E-02
Behavior 2.08E-04–4.63E-02
Digestive system development and
function

2.08E-04–4.63E-02

Cellular development 2.86E-04–4.63E-02
Cancer 5.50E-04–4.89E-02

Ingenuity pathway analysis (IPA) of biological functions
categories among our top blood candidate biomarker genes
for mood. Genes from Table 3 (n = 36). Top categories,
overrepresented with a significance of P < 0.005, are shown.
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disease state. Panels of such biomarkers may serve as
a basis for objective clinical laboratory tests, a long-
standing Holy Grail for psychiatry. Biomarker-based
tests may help with early intervention and prevention
efforts, as well as monitoring response to various
treatments. In conjunction with other clinical infor-
mation, such tests will play an important part of
personalizing treatment to increase effectiveness and
avoid adverse reactions—personalized medicine in
psychiatry. Moreover, they may be of scientific use in
combination with imaging studies (imaging geno-
mics79), and will be of use to pharmaceutical
companies engaged in new neuropsychiatric drug
development efforts, at both a preclinical and clinical
(phases I, II and III) stages of the process.
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