Rapid PublicationTowards Understanding The Schizophrenia Code:An Expanded Convergent Functional Genomics Approach

H. Le-Niculescu,^{1,2,3} Y. Balaraman,^{1,2,3} S. Patel,^{1,3} J. Tan,^{1,3} K. Sidhu,^{1,3} R.E. Jerome,⁴ H.J. Edenberg,⁴ R. Kuczenski,⁵ M.A. Geyer,⁵ J.I. Nurnberger Jr,³ S.V. Faraone,⁶ M.T. Tsuang,⁵ and A.B. Niculescu^{1,2,3}*

¹Laboratory of Neurophenomics, Indiana University School of Medicine, Indianapolis, Indiana

²INBRAIN, Indiana University School of Medicine, Indianapolis, Indiana

³Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana

⁴Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana

⁵Department of Psychiatry, UC San Diego, La Jolla, California

⁶Department of Psychiatry, SUNY Upstate Medical University, Syracuse, New York

Identifying genes for schizophrenia through classical genetic approaches has proven arduous. Here, we present a comprehensive convergent analysis that translationally integrates brain gene expression data from a relevant pharmacogenomic mouse model (involving treatments with a psychomimetic agent—phencyclidine (PCP), and an anti-psychotic-clozapine), with human genetic linkage data and human postmortem brain data, as a Bayesian strategy of cross validating findings. Topping the list of candidate genes, we have three genes involved in GABA neurotransmission (GABRA1, GABBR1, and GAD2), one gene involved in glutamate neurotransmission (GRIA2), one gene involved in neuropeptide signaling (TAC1), two genes involved in synaptic function (SYN2 and KCNJ4), six genes involved in myelin/glial function (CNP, MAL, MBP, PLP1, MOBP and GFAP), and one gene involved in lipid metabolism (LPL). These data suggest that schizophrenia is primarily a disorder of brain functional and structural connectivity, with GABA neurotransmission playing a prominent role. These findings may explain the EEG gamma band abnormalities detected in schizophrenia. The analysis also revealed other high probability candidates genes (neurotransmitter signaling, other structural proteins, ion channels, signal transduction, regulatory enzymes, neuronal migration/neurite outgrowth, clock genes, transcription factors, RNA regulatory genes), pathways and mechanisms of likely importance in pathophysiology. Some of the pathways identified suggest possible avenues for augmentation pharmacotherapy of schizophrenia with other existing agents, such as benzodiazepines, anticonvulsants and lipid modulating agents. Other pathways are new potential targets for drug development. Lastly, a comparison with our earlier work on bipolar disorder illuminates the significant molecular overlap between schizophrenia and bipolar disorder. © 2006 Wiley-Liss, Inc.

KEY WORDS: schizophrenia; microarray; convergent functional genomics; phencyclidine (PCP); clozapine; brain

Please cite this article as follows: Le-Niculescu H, Balaraman Y, Patel S, Tan J, Sidhu K, Jerome RE, Edenberg HJ, Kuczenski R, Geyer MA, Nurnberger JI Jr, Faraone SV, Tsuang MT, Niculescu AB. 2007. Towards Understanding The Schizophrenia Code: An Expanded Convergent Functional Genomics Approach. Am J Med Genet Part B 9999:1–30.

INTRODUCTION

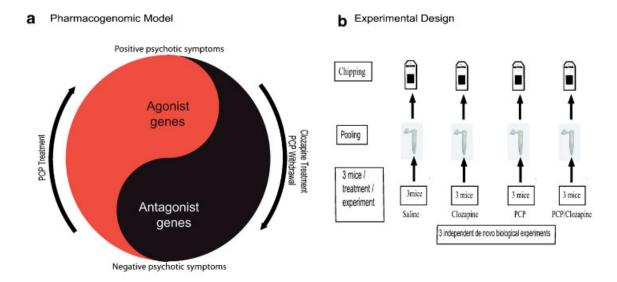
Schizophrenia is a heterogeneous syndrome characterized by perturbations of perception, attention, thinking, affect, volition, and social integration. Patients may present with positive symptoms (such as conceptual disorganization, delusions, and hallucinations) or negative symptoms (anhedonia, decreased emotional expression, decreased motivation, impaired concentration, and diminished social engagement), and must have at least two of these for a 1-month period and continuous signs for at least 6 months to meet formal diagnostic criteria. The genetic basis of schizophrenia is well documented, with an incidence of about 1% in the general population. Having a first-degree relative with the illness increases the likelihood of developing the illness by about 10-fold. Traditionally, linkage analysis and positional cloning approaches have been used to attempt to identify the genes involved. This has led to the identification of a series of loci in the genome that exhibit linkage with the illness. Several of these loci are identified in both schizophrenia and bipolar disorder studies, suggesting the possibility of shared genes between these disorders [Berrettini, 2000; Owen et al., 2004]. As these disorders are likely polygenic, non-Mendelian, with variable penetrance, and the clinical phenotypes are complex, there has been limited success so far in terms of reproducible findings, with some notable exceptions [Harrison and Weinberger, 2005; Petryshen et al., 2005a,b; Norton et al., 2006]. The linkage peaks supported by the most recent meta-analyses [Lewis et al., 2003] and genome scan data [Arinami, 2005] are fairly broad, with hundreds of genes in each peak. A method for prioritizing candidate genes for individual analysis of association with illness is critical. We have previously described one

Grant sponsor: INGEN (Indiana Genomics Initiative of Indiana University); Grant sponsor: INBRAIN (Indiana Biomarker Research Alliance In Neuropsychiatry).

^{*}Correspondence to: A.B. Niculescu, Institute of Psychiatric Research, 791 Union Drive, Indianapolis, IN 46202. E-mail: anicules@iupui.edu

⁻man. anicules@iupui.edu

Received 5 September 2006; Accepted 6 November 2006 DOI 10.1002/ajmg.b.30481


Published online 00 Month 2007 in Wiley InterScience (www.interscience.wiley.com)

such approach, termed Convergent Functional Genomics, and its application to the study of bipolar disorders [Niculescu et al., 2000; Ogden et al., 2004; Bertsch et al., 2005], and more recently to alcoholism [Rodd et al., 2006]. The approach integrates gene expression data from a relevant animal model with human linkage data and human tissue data (postmortem brain, lymphocytes), as a way of cross-validating findings and coming up with a short list of high-probability candidate genes that deserve individual scrutiny in a prioritized manner. Here we apply our approach to schizophrenia, and report the first comprehensive analysis using an expanded convergent functional genomics approach as a way of unraveling the genetic code of schizophrenia and related disorders.

Single-dose phencyclidine (PCP) treatment in humans and animals mimics many of the behavioral signs and symptoms of schizophrenia-positive-like symptoms (hallucinations, delusions, bizarre behavior, and thought disorder), negative-like symptoms (affective flattening, alogia, apathy, and social interaction deficits), and disorganization [Jentsch and Roth, 1999; Abe et al., 2000; Turgeon and Case, 2001; Geyer and Ellenbroek, 2003; Morris et al., 2005; Ouchi et al., 2005] (Fig. 1a). Phencyclidine also produces a pattern of metabolic and neurochemical changes in the rodent brain that mirror those observed in the brains of schizophrenic patients [Morris et al., 2005]. PCP may act not only through NMDA receptor antagonism, but also through D2 receptor agonism, consistent with both hyperdopamine and hypoglutamate theories of psychosis [Seeman et al., 2005].

Clozapine, an atypical or second-generation antipsychotic, is currently the gold standard of treatment for schizophrenia [Tandon and Fleischhacker, 2005], and has been shown to interfere with and treat the development of both positive and negative symptoms. The spectrum of efficacy of clozapine is broader than for other antipsychotics, particularly for negative symptoms [Lindenmayer et al., 2004].

In essence, in our approach, we are using drug effects on gene expression as tools to tag genes that may have pathophysiological relevance. Changes in gene expression in response to each of the two drugs, PCP and clozapine, would be of interest in and of themselves, in terms of candidate gene generation

C Gene Changes by Drug Treatments / Categories I, II, III, and IV d Multiple Lines of Evidence for Bayesian Cross-Validation

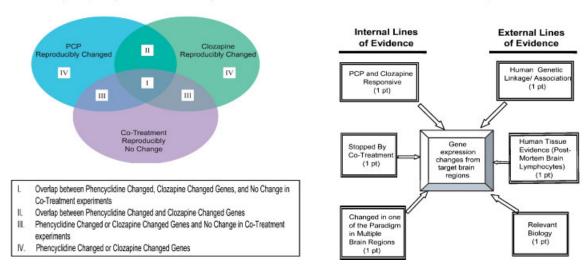


Fig. 1. Design of experiments and data analysis. **a**: Pharmacological treatment paradigm (**b**) Experimental design (**c**) Venn diagram categorizing genes changed by the various drug treatments, and their classification into Categories I, II, III, and IV (**d**) Multiple converging independent internal and external lines of evidence for cross—validation of findings.

and convergent functional genomics. However, not all genes that show changes in expression in response to either of the drugs are necessarily germane to the pathophysiology of schizophrenia and related disorders. It is likely that some of the gene expression changes have to do with other effects of the drugs, particularly their individual side-effects. We hence used three internal criteria for cross-validation. We reasoned, first, that genes that change in expression in response to both drugs are more likely to be involved in the core pathophysiology we are modeling, and are higher probability candidate genes. Second, co-treatment with the two drugs, one a schizophrenia inducing, and the other one a schizophrenia-treating drug, could arguably show interference effects (Figs. 1 and 2a), and some of the genes that would be changed by single drug treatment would be "nipped in the bud" and show no changes in expression in response to co-treatment. Those genes would also be deemed higher probability candidate genes than the genes that still change during co-treatment. Third, we comprehensively surveyed gene expression changes across six different brain regions (prefrontal cortex (PFC), amygdala (AMY), caudate putamen (CP), nucleus accumbens (NAC), ventral tegmentum (VT), and hippocampus (HIP)), that have shown

evidence, in human imaging, human postmortem, or animal studies, of being potentially implicated in the pathophysiology of schizophrenia and related disorders [Galter et al., 2003; Aleman and Kahn, 2005; Lauer et al., 2005; Tamagaki et al., 2005; Snitz et al., 2005; Konopaske et al., 2006; Qiu et al., 2006; Shad et al., 2006; Vita et al., 2006]. We also reasoned that genes that had expression changes in more than one of the brain regions have a higher probability of being positive findings compared to genes that changed in a single region, at the very least for reproducibility reasons, as the assaying of different brain regions are essentially independent experiments.

As external cross-validators, we used three criteria in our expanded convergent functional genomics analysis [Ogden et al., 2004] (Fig. 1d). First, each gene was assessed to see if there was any published evidence of association with schizophrenia, or at least if it mapped to a linkage locus that had been implicated in schizophrenia. Our criterion was mapping within 10 centimorgans (cM) of a marker that has shown significant evidence of linkage [Niculescu et al., 2000] to schizophrenia, with a lod score >2 in at least one published study. We also looked more broadly at cross-matching with linkage data from other neuropsychiatric disorders (bipolar disorder, alcohol-

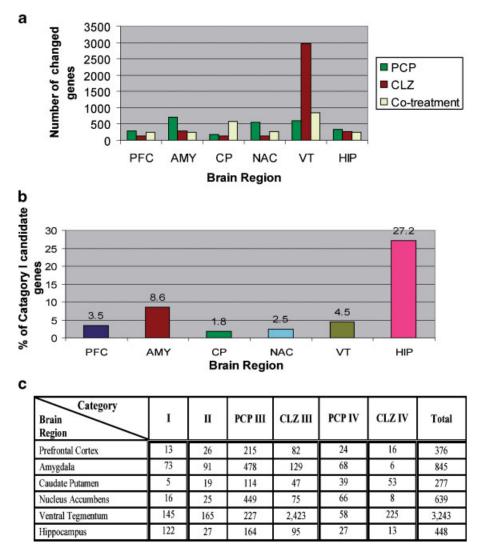


Fig. 2. Number of genes reproducibly changed. PCP—phencyclidine; CLZ-clozapine. (a) Comparative effects of Phencyclidine, clozapine and cotreatment with both drugs in different target brain regions, showing interference effects of co-treatment. b: Distribution of Category I candidate genes across brain regions—% of Category I genes out of total number of genes changed (Category I-IV). c: Number of reproducibly changed genes by Categories I–IV.

ism), based on the rationale that their clinical co-morbidity with schizophrenia may be due, at least in part, to genetic overlap [Nurnberger et al., 2004; Craddock et al., 2006]. Second, we searched to see if there was any human tissue data (postmortem brain, lymphocytes, fibroblasts) showing expression changes of the gene in patients that had schizophrenia or, more broadly, other neuropsychiatric disorders (bipolar disorder, major depression, anxiety, alcoholism, other substance dependence disorders, dementia, suicide). Third, we looked at the known biological functions associated with the gene and asked if they had any relevance to the pathophysiology of schizophrenia and/or other neuropsychiatric disorders. These external criteria suffer from the obvious drawback of being constrained by what has been published so far, limiting novelty, and to the inherent biases and limitations of those particular lines of work. Moreover, these external criteria are arguably broad, and may benefit from future parsing. Including disorders other than schizophrenia in our external lines of evidence arguably dilutes the specificity of our approach. We nevertheless decided to include them as a way of increasing sensitivity, based on the emerging clinical, neurobiological and genetic evidence of substantial overlap between these disorders and schizophrenia Berrettini, 2000; Hyman and Fenton, 2003; Nurnberger et al., 2004; Brown, 2005; Craddock et al., 2006; Niculescu et al., 2006], and the likelihood that published schizophrenia related datasets to date are nonexhaustive. To address the issue of specificity for the external lines of evidence, we decided to differentially weight the significance of the evidence directly related to schizophrenia with a score of 1, and of the evidence only related to other neuropsychiatric disorders with a lesser score of 0.5.

For each gene in our datasets, using the three internal and three external cross-validators described above (Fig. 1d), we assigned a generic score of 1 for each internal criterion and a score of 1 or 0.5 for each external criterion, as a way of generating an empirical tabulation of the independent lines of evidence. According to Bayesian theory, an optimal estimate results from combining prior information with new evidence [Bernardo and Smith, 1994]. While we cannot exclude that some of the candidate genes we have identified are false positives due to potential biological or technical limitations of the methodology and approach we employed, the higher the number of independent lines of evidence, the lower the likelihood of that being the case. Thus, totaling all the internal and external lines of evidence gives a maximum possible score of 6 points, with the internal evidence and the external evidence weighted equally.

It has not escaped our attention that different ways of scoring the independent lines of evidence could be used, which might give somewhat different results in terms of the prioritization of the top candidate genes, if not in terms of the actual content of the list per se. However, our simple weighted scoring is arguably a reasonable compromise between specificity and sensitivity, between focus and broadness.

Our approach identifies an extensive series of candidate genes, some of which have already been reported using various schizophrenia- related treatments or paradigms [Mirnics et al., 2001a; Iwamoto et al., 2004; Owen et al., 2004; Silverstone et al., 2004; Vawter et al., 2004; Wong et al., 2004; Katsel et al., 2005a; Talkowski et al., 2006], and thus in a sense serve as positive controls, as well as many which are novel. Moreover, the coalescence of the candidate genes into pathways and mechanisms is of particular importance and opens new directions. Last but not least, as per our earlier formulation that "genes that change together (may) act together" [Niculescu et al., 2000], the data we have generated showing genes expression changes in various brain regions (Tables I and II) offer testable hypotheses for transcriptional co-regulation, and for epistatic interactions among the corresponding loci.

MATERIALS AND METHODS

Phencyclidine (PCP) and Clozapine Treatments in Mice

All experiments were performed with male C57/BL6 mice, 8–12 weeks of age, obtained from Jackson Laboratories (Bar Harbor, ME), and acclimated for at least 2 weeks in our animal facility (IU School of Medicine LARC) prior to any experimental manipulation. Mice were treated by intraperitoneal injection with either single-dose saline, PCP (7.5 mg/kg), Clozapine (2.5 mg/kg), or a combination of PCP and Clozapine (7.5 and 2.5 mg/kg). Three independent de novo biological experiments were performed at different times. Each experiment consisted of three mice per treatment condition, for a total of nine mice per condition across the three experiments (Fig. 1b).

Behavioral Studies and Analysis

Locomotor activity was measured immediately after drug administration and again 24 hr later, using methodology previously described [Ogden et al., 2004]. At the beginning of the test session, each mouse was placed in an enclosure with pre-defined areas, that is, center area, corner area, and wall area. The movements of the mice were recorded for 30 min, with data being stored in six 5 min blocks.

Microdissection

Twenty-four hours after drug administration, following the 24 hr time-point behavioral test, the animals were sacrificed by decapitation. The brains of the mice were harvested and stereotactically sliced using a wire-slicer device, with wires spaced based on mouse brain atlas coordinates. Specific brain regions bilaterally -PFC, AMY, CP, NAC, VT, and HIP were hand micro-dissected on an ice-cold metal platform. Tissue samples were flash frozen in liquid nitrogen within 10 min of the animals being sacrificed, and stored in -80° C until future processing for RNA extraction and gene expression analysis.

Microarrays

We used Mouse Genome 430 2.0 arrays (Affymetrix, Santa Clara, CA). The GeneChip Mouse Genome 430 2.0 Array contain over 45,000 probe sets that analyze the expression level of over 39,000 transcripts and variants from over 34,000 well-characterized mouse genes. Microarrays used in each independent experiment were derived from the same manufacturing lot.

Microarray Experiments

Standard techniques were used to obtain total RNA (22 gauge syringe homogenization in RLT buffer) and to purify the RNA (RNeasy mini kit, Qiagen, Valencia, CA) from microdissected mouse brain regions. The quality of the total RNA was confirmed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA). The quantity and quality of total RNA was also independently assessed by 260 nm UV absorption and by 260/280 ratios, respectively (Nanodrop spectro-photometer). Starting material of total RNA labeling reactions was kept consistent within each independent microarray experiment.

For each brain region, equal amounts of total RNA extracted from tissue samples was pooled within each biological experiment (3 mice per treatment group), and then used for labeling and microarray assays. The microarray assays for each of the three de novo biological animal experiments were conducted independently, at different times. Standard Affymetrix

Gene Accession Number	Symbol - Description	CLZ Change	PCP Change	Stopped by Co- Treatment	Multiple Brain Regions	Human genetic linkage/ association	Relevant Biology	Human Tissue (Postmortem brain, blood)	Lines of evidence score
PREFRONT/	AL CORTEX								
Down NM_019439.2	<u>Gabbr1</u> gamma-aminobutyric acid (GABA-B) receptor, 1	D	D	Yes	AMY III-CLZ NAC III-PCP VT III-CLZ	6p.22.1 SZ (Lewis et al 2003),(Fivu et al 2000),(Zai et al 2005),(Hisama et al 2001) BP (Turecki et al 2001),(Cichon et al 2001)	Yes	SZ and BP (Ishikawa et al 2005) SZ (Mizukami et al 2000)	6
AK019046	Mal myelin and lymphocyte protein, T-cell differentiation protein	D	D	Yes	AMY Cat II VT III-PCP NACIV-PCP	2q11.1 SZ (Lewis et al 2003).(Straub et al 2002).(DeLis et al 2009). (Chen et al 1998) (Farance et al 2006a) Etoh ^(Wyszynski et al 2003)	Yes	SZ (Hakak et al 2001) MDD (Aston et al 2005) BP (Middleton et al 2005) Etoh(Lewohl et al 2000)	6
BB380620	<u>Arhgef9</u> Cdc42 guanine nucleotide exchange factor (GEF) 9	D	D	Yes	NAC Cat I AMY III-CLZ	Xq11.2 Unipolar Depression (Badenhop et al 2002)	Yes	SZ (Giatt et al 2005)	5.5
BB476448	Camk2a Calcium/Calmodulin- dependent protein kinase II- alpha	D	D	Yes	AMY Cat I VT Cat II CP III-CLZ NAC III-CLZ	5032 SZ ^{(Lewis et al 2003),(Devlin et al 2002)} SZ,SZA ^(Sklar et al 2004) Etoh ^(Sun et al 1999)	Yes	BP (Molnar et al 2003) Depression ^(Novak et al 2005)	5.5
BG311385	Adora2a adenosine 2A receptor	D	D		NAC Cat II AMY III-PCP	22011.23 SZ ^{(Lewis et al 2003),} (Takahashi et al 2003) BP ^(Detera-Wadleigh et al 1999)	Yes	SZ (Kurumaji and Toru 1998)	5
BE957273	Drd1 dopamine receptor D1	D	D		AMY III-PCP	5q35.2 SZ ^(Rybakowski et al 2005) ,(Potkin et al 2003)	Yes	SZ and BP (Pantazopoulos et al 2004) SZ (Domyo et al 2001; Knable et al 1996) SZ (Dean et al 2004)	5
NM_010077	Drd2 dopamine receptor 2	D	D		AMY III-PCP	11q23.2 SZ (Lewis et al 2003),(Dubertret et al 2004; Golimbet et al 2003; Schindler et al 2002) Etoh ^{(Sun et al} 1999)	Yes	SZ (Toru 1998), (Goldsmith et al 1997), (Seeman et al 1997) Tourette syndrome ^{(Minzer et al} 2004)	5
NM_009311.1	<u>Tac1</u> tachykinin, precursor 1 (substance K, substance P, neurokinin 1, neurokinin 2)	D	D		VT Cat AMY III-PCP	7g21.3 SZ (Ekelund et al 2000), (Yan et al 2000) BP ^{(Og} den et al 2004), (McInnis et al 2003) SZA ^(Yan et al 2000)	Yes	SZ (Tooney et al 2001) HD (Bird 1980) A (Rosler et al 2001)	5
AMYGDALA									
<u>Up</u> NM_009923.1	<u>Cnp</u> 2',3'-cyclic nucleotide 3' phosphodiesterase	l	l	Yes	CP Cat I NAC III-PCP PFC III-PCP VT III- CLZ	17g21.2 SZ ^{(Lewis et al 2003), (Perce et al 2006)}	Yes	SZ (Hakak et al 2001; Merce et al 2006),(Dracheva et al 2006),(Flynn et al 2003) MDD(Aston et al 2005), Etoh(Lewohl et al 2000)	6
NM_010250.1	Gabra1 gamma-aminobutyric acid (GABA-A) receptor, subunit alpha 1	l	1	Yes	CP III-PCP NAC III-PCP VT III-CLZ	5q34 SZ (Lewis et al 2003),(Sklar et al 2004) BP (Park et al 2004) Autism ^{(Ma} et al 2005)	Yes	ETON SZ (Ishikawa et al 2004) (Impagnatiello et al 1998) Review (Costa et al 2005).(Lewis et al 2004) (Hakak et al 2001)	6
AF326550.1	Gad2/Gad 65 glutamic acid decarboxylase 2	Ι	I	Yes	NAC III-PCP VT IV- CLZ	10p12.1 SZ, BP (Maziade et al 2005) SZ (Faraone et al 1998) BP (McInnis et al 2003)	Yes	SZ (Fatemi et al 2006c),(Dracheva et al 2004) ,(Todtenkopf and Benes 1998) SZ, BP ^(Heckers et al 2002)	6
BB183081	<u>Gfap</u> glial fibrillary acidic protein	I (MI)	I	Yes	NAC III-CLZ PFC IV- CLZ	17q21.31 SZ ^(Lewiss et al 2003) Autism ^(Cantor et al 2005)	Yes	SZ, BP (Webster et al 2005),(Johnston- Wison et al 2000) SZ (Pajkowska et al 2002) MDD(Fatemi et al 2004) Etoh(Lewoht et al 2000)	6
NM_010777.1	Mbp myelin basic protein	I	I	Yes	PFC III-PCP	18023 SZ (Lewis et al 2003),(Straub et al 2002) BP (Schulze et al 2003)	Yes	SZ, BP (Chambers and Perrone- Bizzozaro 2004),(Tkachev et al 2003), Etoh(Lewohl et al 2000) AD (Wang et al 2004) Cocaine Addiction (Bannon et al 2005)	6
M15442.1	<u>Plp1</u> proteolipid protein (myelin) 1	I	I	Yes	PFC III-PCP VT IV- CLZ	Xq22.2 SZ ^(Carl et al 2005c)	Yes	SZ (Aston et al 2004) SZ, BP (Tkachev et al 2003) MDD (Aston et al 2005) Etoh (Mayfield et al 2002) Cocaine Addiction (Bannon et al 2005)	6
BM899593	Mobp myelin-associated oligodendrocytic basic protein	I	I	Yes	NAC Cat II PFC III-PCP	3p22 SZ ^(Lewis et al 2003)	Yes	SZ,BP ^(Tkachev et al 2003) MDD ^(Aston et al 2005) Etoh ^(Mayfield et al 2002)	6
NM_013467.1	Aldh1a1 aldehyde dehydrogenase family 1, subfamily A1	I	I	Yes	NAC Cat II	9q21.13 SZ (Hovatta et al 1999) BP (Macgregor et al 2004)	Yes	SZ ^(Galter et al 2003)	5.5
BB476448	Camk2a Calcium/Calmodulin- dependent protein kinase II- alpha	I	I	Yes	PFC Cat I VT Cat II NAC III-CLZ CP III-CLZ	5032 SZ ^{(Lewis et al 2003),(Devlin et al 2002)} SZ and SZA ^(Sklar et al 2004) Etoh ^(Sun et al 1999)	Yes	BP (Molinar et al 2003) Depression ^{(Novak} et al 2006)	5.5
BC027019	<u>Syt2</u> Synaptotagmin 2	I	I	Yes	CP Cat II VT Cat II NAC III-PCP	1g32.1 SZ ^{(Paunio} et al 2004),(Hovatta et al 1999)	Yes	AD (Sze et al 2000)	5.5
NM_007470.1	Apod apolipoprotein D	I	I		HIP III-CLZ PFC III-CLZ VT III-PCP	3q26.2-qter SZ ^(Hansen et al 2006) BP ^(Cichon et al 2001)	Yes	SZ (Mahadik et at 2002) (Yao et al 2005) SZ, BP ^(Thomas et al 2003) .(Thomas et al 2001)	5
NM_009871.1	Cdk5r1 cyclin-dependent kinase 5, regulatory subunit (p35) 1	I	I	Yes	CP III-CLZ NAC III-PCP PFC III-PCP VT III-CLZ	17q11.2 Mental Retardation ^{(Venturin et al} 2006) Etoh ^(Hill et al 2004)	Yes	AD and Down syndrome (Swatton et al 2004)	5

TABLE I. Top Category I and II Genes

(Continued)

$TABLE \ I. \ (Continued \)$

Gene Accession Number	Symbol - Description	CLZ Change	PCP Change	Stopped by Co- Treatment	Multiple Brain Regions	Human genetic linkage/ association	Relevant Biology	Human Tissue (Postmortem brain, blood)	Lines of evidence score
AV322952	Foxp2 forkhead box P2	I	Ι	Yes	HIP cat II PFC III-PCP VT III-CLZ	7q31.1 SZ ^(Sanjuan et al 2006) BP ^(Detera-Waddleigh et al 1999) Autism ^(Cong et al 2004) ,(Muhle et al 2004)	Yes		5
NM_019691.2	Gria4 glutamate receptor, ionotropic, AMPA4	I (MI)	1	Yes	af ad hAlfan haiki I fan an 197 ad a 196 fan an a 196 haf a 1986 an HAlfan	11022.3 SZ ^{(Lewis et al 2003),(Mekino et al 2003)}	Yes	SZ (Dracheva et al 2005)	5
AF109769.1	Mapk8ip1 mitogen activated protein kinase 8 interacting protein 1	I	I	Yes	NAC III-PCP PFC III-PCP	11p11.2 SZ ^(Yamada et al 2004)	Yes	AD ^(Helbecque et al 2003)	5
NM_011866.1	Pde10a phosphodiesterase 10A	I	I	Yes	PFC Cat II CP III-CLZ VT III-CLZ	$\begin{array}{c} 6p27\\ SZ^{(\text{Lindholm et al }2001)} \end{array}$	Yes		5
NM_009062	Rgs4 regulator of G-protein signaling 4	I	1		VT Cat II HIP III-CLZ PFC III-CLZ	1q23.3 SZ ^{(Lewis} et al 2003),[Chen et al 2004a), (Chowdari et al 2002; Morris et al 2004)	Yes	SZ (Mirnics et al 2001b) ,(Mirnics et al 2001a)	5
NM_024226	Rtn4 reticulon 4/Nogo	I	I		PFC III-PCP	2p16.1 SZ ^(Tan et al 2005)	Yes	SZ and Nogo ^(Novak et al 2002) SZ (Bandlow et al 2004)	5
NM_080853	Slc17a6 solute carrier family 17 (sodium-dependent inorganic phosphate cotransporter), 6	I	I	Yes	NAC Cat II	11p14.3	Yes	SZ (Eastwood and Harrison 2005),(Harrison et al 2003),(Smith et al 2001)	5
Down						2n9E 0		SZ,BP (Vawler et al 20026)	
NM_013681.1	<u>Syn2</u> synapsin II	D	D	Yes	VT Cat I CP III-PCP CP Cat II	3p25.2 SZ ^{(Paunio et al 2004),(Chen et al 2004b),(Lee et al 2005), (Chen et al 2004a)}	Yes	SZ (Browning et al 1993) AD (Ho et al 2001)	6
AV152953	<u>Ttr</u> Transthyretin	D	D	Yes	NAC Cat II VT Cat II	18g21.1 SZ (Goodman 1998; Maziade et al 2005)	Yes	Amyloid ^(Yoshinaga et al 2004)	5.5
BQ175227	Ywhab Tyrosine monooxygenase/ tryptophan 5monooxygenase activation protein, beta polypeptide/14-3-3 genes	D	D	Yes	NAC III-PCP PFC III-CLZ HIP IV-CLZ VT IV-CLZ	20q13.1 BP ^(Radhakrishna et al 2001)	Yes	$SZ^{(Middleton \ et \ al \ 2005)}$	5.5
CAUDATE-F									
Down NM_009923.1	Cnp 2',3'-cyclic nucleotide 3' phosphodiesterase	D	D	Yes	AMY I NAC III-PCP PFC III-PCP VT III- CLZ	17g21.2 SZ (Lewis et al 2003), (Pelice et al 2006)	Yes	SZ (Hakak et al 2001; Pairce et al 2006),(Dracheva et al 2006),(Flynn et al 2003)	6
	CCUMBENS								
Up U11075	Kcnj4/Kir2.3 potassium inwardly-rectifying channel, subfamily J, 4	l(MI)	I	Yes	PFC III-PCP	22q13.1 SZ (Coon et al 1994) BP ^(Kelsoe et al 2001)	Yes	SZ (Zvara et al 2005)	6
NM_008509.1	Lipoprotein lipase	I (MI)	I	Yes	HIP Cat I AMY III-CLZ	8p21.3 SZ (Lewis et al 2003),(Brzustowicz et al 2000; Straub et al 2002),(Chiu et al 2002)	Yes	SZ ^(Glatt et al 2005)	6
NM_013613	<u>Nr4a2/ Nurr1</u> Nuclear receptor subfamily 4, group A, member 2	I		Yes	HIP Cat I VT Cat II AMY III-PCP PFC III-PCP	2q24.1 SZ, Suicidal Behavior ^{(Cheng et al} 2006) ADHD ^{(Smith et al} 2005)	Yes	Cocaine Abuser ^{(Bannon et al} 2002)	5.5
BM899593	Mobp myelin-associated oligodendrocytic basic protein	I	I		AMY Cat I PFC III-PCP	3p22 SZ ^(Lewis et al 2003)	Yes	SZ,BP (^{Tkachev} et al 2003) MDD (^{Aston} et al 2005) Etoh(^{Mayfield} et al 2002)	5
NM_011361.1	Sgk serum/glucocorticoid regulated kinase	I	I	Yes	AMY Cat II VT Cat II	6q23.2 SZ ^(Levi et al 2005) BP ^{(Venken et al 2005),(Ewald et al 2002)}	Yes		5
AV031691	Zic1 Zinc finger protein of the cerebellum 1	I(MI)		Yes	AMY Cat II CP Cat II HIP Cat II PFC III-CLZ	3g24 SZ (Bulayeva et al 2005) BP, SZA ^(Badenhop st al 2002)	Yes		5
	EGMENTUM								
<u>Uр</u> вв075797	Epha7 ephrin receptor A7	I	I(MI)	Yes	HIP Cat II	6q16.1 SZ (Lewis et al 2003),(Cao et al 1997) BP ^{(Dick} et al 2003)	Yes		5
BB549292	Maob monoamine oxidase B	I	1	Yes		Xp11.3 SZ ^(Dann et al 1997)	Yes	SZ (Tachiki et al 1984)	5
NM_009062	Rgs4 regulator of G-protein signaling 4	I	1		AMY Cat II HIP III-CLZ PFC III-CLZ	1q23.3 SZ ^{(Lewis et al 2003),[Chen et al 2004a),} (Chowdari et al 2002; Morris et al 2004)	Yes	SZ ^(Mirnics et al 2001b) ,(Mirnics et al 2001a)	5
Down		tis latin a location the litera latin and a latin latin	al e de cale de constante de la decla de cale de la decla de const	01 min al a hai a 1 ma 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a		a Offension in the state of the second state of the	1 play mark blav halvs Lake Law Halp Lake Har - 1	tefa Domi (italei naiz) defensa iz Diefa konteña (italei al cala dira defensa (italei den itzen) e al e	1 mail Brail Han diraal - 14 al
NM_013540.1	Gria2 glutamate receptor, ionotropic, AMPA 2	D(MD)	D(MD)	Yes		4q32.1 SZ (Hovatta et al 1999; Straub et al 2002) BP (Ekholm et al 2003; Segurado et al 2003; Williams et al 2003; Williour et al 2003)	Yes	SZ ^(Vawler et al 2002a)	6
NM_013681.1	<u>Syn2</u> synapsin II	D	D	Yes	AMY Cat I CP III-PCP	3p25.2 SZ ^{(Paunio et al 2004),(Chen et al 2004b),(Lee et al 2005), (Chen et al 2004a)}	Yes	SZ,BP (Vawler et al 2002b) SZ (Browning et al 1993) AD (Ho et al 2001)	6
NM_009311.1	<u>Tac1</u> tachykinin, precursor 1 (substance K, substance P, neurokinin 1, neurokinin 2)	D	D	Yes	PFC Cat II AMY III-PCP	7g21.3 SZ (Ekelund et al 2000),(Yan et al 2000) BP ^{(O} gden et al 2004),(Mctinnis et al 2003) SZA ^(Yan et al 2000)	Yes	SZ ^{(Tooney et al 2001}) HD ^(Bird 1980) AD ^(Roster et al 2001)	6
NM_009946.1	Cplx2 Complexin 2	D	D	Yes		5q35.2 SZ ^(Lee et al 2005)	Yes	SZ ^(Eastwood and Harrison 2005) (Eastwood et al 2003; Qin et al 2005c) HD (Morton and Edwardson 2001)	5

Gene Accession Number	Symbol - Description	CLZ Change	PCP Change	Stopped by Co- Treatment	Multiple Brain Regions	Human genetic linkage/ association	Relevant Biology	Human Tissue (Postmortem brain, blood)	Lines of evidence score
NM_008169	<u>Grin1</u> glutamate receptor, ionotropic, N-methyl D- aspartate 1	D	D		NAC III-CLZ	99,34.3 SZ ^{(Clin} et al 2005b),(Martucci et al 2003),(Begni et al 2003) BP (Fareone et al 2006b), (Mundo et al 2003)	Yes	Glutamate receptors ^{(Stadiar et} al 2005)	5
NM_007863.1	Mpp3 membrane protein, palmitoylated 3 (MAGUK p55 subfamily member 3)	D	D(MD)	Yes	HIP Cat I AMY III-CLZ NAC III-CLZ	17q21.31 BP ^(Segurado et al 2003) Etoh ^(Hill et al 2004)	Yes	SZ ^(Vawler et al 2004)	5
NM_011261.1	<u>Rein</u> reelin	D	D		PFC III-CLZ	7q22.1 SZ ^(Ekelund et al 2000)	Yes	SZ (Impagnatiello et al 1998), (Abdolmaleky et al 2005; Guidotti et al 2000) Autism ^(Fatemi et al 2005b)	5
HIPPOCAM	PUS								
<u>Up</u>									
NM_007627.2	Cckbr cholecystokinin B receptor	T	I	Yes	NAC III-PCP VT III-CLZ CP IV-PCP	11p15.4 Parkinson ^(Wang et al 2003)	Yes	SZ (Zachrisson et al 1999)	5.5
NM_013613	Nr4a2/ Nurr1 Nuclear receptor subfamily 4, group A, member 2	I	I	Yes	NAC Cat I VT Cat II AMY III-PCP PFC III-PCP	2q24.1 SZ, Suicidal Behavior ^{(Cheng et al} 2006) ADHD ^(Smith et al 2005)	Yes	Cocaine Abuser ^{(Bannon et al} 2002)	5.5
NM_019789.2	Csen calsenilin, presenilin binding protein, EF hand transcription factor	I	I	Yes	VT III-CLZ CP IV-CLZ	2011.1 SZ (Lewis et al 2003), (DeLisi et al 2002) ,(Straub et al 2002) Etoh (Wyszynski et al 2003)	Yes	AD (Jin et al 2005)	5
NM_008963.1	Ptgds prostaglandin D2 synthase 21kDa (brain)			Yes	VT Cat II AMY III-PCP CP III-PCP	9q34.3 SZ (Kaulmann et al 1998) BP (Faraone et al 2006b)	Yes	Neurological disorders. ^{(Hiraoka} et al 2001) (Harrington et al 2006)	5
<u>Down</u>	การการการการการการการการการการการการการก								
NM_008509.1	Lpl Lipoprotein lipase	D	D	Yes	NAC Cat I AMY III-CLZ	8p21.3 SZ (Lewis et al 2003),(Brzustowicz et al 2000; Straub et al 2002),(Chiu et al 2002)	Yes	SZ (Glatt et al 2005)	6
NM_007863.1	Mpp3 membrane protein, palmitoylated 3 (MAGUK p55 subfamily member 3)	D (MD)	D	Yes	VT Cat I Amy III-CLZ NAC III-CLZ	17021.31 BP ^(Dahn et al 1997) EtoH ^(Hill et al 2004)	Yes	SZ ^(Dann et al 1997)	5

TABLE I. (Continued)

Category I and II genes with a minimum line of evidence score of 5.0 out of 6 are shown. I, increased; D, decreased; MI, moderately increased; MD, moderately decreased; PCP, Phencyclidine; CLZ, Clozapine; PFC, prefrontal cortex; AMY, amygdala; CP, caudate putamen; NAC, nucleus accumbens; VT, ventral tegmentum; HIP, hippocampus; SZ, schizophrenia; BP, bipolar disorder; MDD, major depressive disorder; Etoh, alcoholism; AD, Alzheimer; HD, Huntington disease. Roman numerals in the multiple brain region data column represent the Category of the gene.

protocols were used to reverse transcribe the messenger RNA and generate biotinlylate cRNA (http://www.affymetrix.com/ support/downloads/manuals/expression_s2_manual.pdf). The amount of cRNA used to prepare the hybridization cocktail was kept constant intra-experiment. Samples were hybridized at 45°C for 17 hr under constant rotation. Arrays were washed and stained using the Affymetrix Fluidics Station 400 and scanned using the Affymetrix Model 3000 Scanner controlled by GCOS software. Data were extracted using the MicroArray Suite 5 (MAS5) algorithm. All sample labeling, hybridization, staining and scanning procedures were carried out as per manufacturer's recommendations.

Quality Control

All arrays were scaled to a target intensity of 1000 using Affymetrix MASv 5.0 array analysis software. Quality control measures including 3':5' ratios for GAPDH and beta-actin, scaling factors, background, and Q values were within acceptable limits.

Microarray Data Analysis

Data analysis was performed using Affymetrix Microarray Suite 5.0 software (MAS v5.0). Default settings were used to define transcripts as present (P), marginal (M), or absent (A). A comparison analysis was performed for each drug treatment, using its corresponding saline treatment as the baseline. "Signal," "Detection," "Signal Log Ratio," "Change," and "Change P-value," were obtained from this analysis. Only transcripts that were called Present in at least one of the two samples (saline or drug) intra-experiment, and that were reproducibly changed in the same direction in at least two out of three independent experiments, were analyzed further.

Gene Identification

The identities of transcripts were established using NetAFFX (Affymetrix), and confirmed by cross-checking the target mRNA sequences that had been used for probe design in the Affymetrix Mouse Genome 430 2.0 arrays with the GenBank database. Where possible, identities of ESTs were established by BLAST searches of the nucleotide database. A National Center for Biotechnology Information (NCBI, Bethesda, MD) BLAST analysis of the accession number of each probe-set was done to identify each gene name. BLAST analysis identified the closest known mouse gene existing in the database (the highest known mouse gene at the top of the BLAST list of homologues) which then could be used to search the GeneCards database (Weizmann Institute, Rehovot, Israel) to identify the human homologue. Probe-sets that did not have a known gene were labeled "EST" and their accession numbers kept as identifiers.

Genetic Linkage Convergence

To designate convergence for a particular gene, the gene had to map within 10 cM of a microsatellite marker for which at least one published study showed evidence for linkage to schizophrenia, or another neuropsychiatric disorder. The University of Southampton's sequence-based integrated map of the human genome (The Genetic Epidemiological Group, Human Genetics Division, University of Southampton: http:// cedar.genetics.soton.ac.uk/public_html/) was used to obtain cM locations for both genes and markers. The sex-averaged cM value was calculated and used to determine convergence to a particular marker. For markers that were not present in the Southampton database, the Marshfield database (Center for Medical Genetics, Marshfield, WI: http://research.

TABLE II	Genes that are	Changed in	Opposite Directions	hy PCP and CLZ
1ADLE II.	Genes that are	Unangeu m	Opposite Directions	by I OI and OLL

Gene Accession Number	Symbol - Description	CLZ Change	PCP Change	Stopped by Co- Treatment	Multiple Brain Regions	Human genetic linkage/ association	Relevant Biology	Human Tissue (Postmortem brain, blood)	Lines of evidence score
NUCLEUS AC	CUMBENS Category I							brain, biobay	
BB380620	Arhgef9 Cdc42 guanine nucleotide exchange factor (GEF) 9	D	I	Yes	PFC Cat I AMY III-CLZ	Xq11.2 Depression ^(Badenhop et al 2002)	Yes	SZ ^(Gilatt et al 2005)	5.5
NM_010882.2	<u>Ndn</u> Necdin	I	D	Yes	AMY III-CLZ PFC III-PCP VT III- CLZ CP IV- CLZ	15q11.2 SZ ^(Fallin et al 2003)	Yes		5
NM_008142.2	<u>Gnb1</u> Guanine nucleotide binding protein (G protein), beta polypeptide 1)	МІ	D	Yes	AMY Cat II PFC III-PCP VT IV- CLZ	1p36:33 Neuroblastoma 2004)	Yes	BP (Middleton et al 2005)	4.5
NM_153529.1	<u>Nrn1</u> Neuritin 1	D	I	Yes		6p25.1 SZ ^(Lewis et al 2003) ,(Maziade et al 1997) EtoH ^(Hill et al 2004)	Yes		4
VENTRAL TE	GMENTUM Category I								
NM_009333.2	Tcf7l2 Transcription factor 7-like 2, T-cell specific, HMG-box	I	D	Yes	AMY III-PCP CP III- PCP NAC IVPCP	10q25.3 SZ (Lerer et al 2003) ,(Failin et al 2003),(Faraone In Press)	Yes		5
NM_009723.1	<u>Atp2b2</u> ATPase, Ca++ transporting, plasma membrane 2	I	D	Yes	NAC III- CLZ	3p25.3 SZ ^{(Lewis et al 2003),(Paunio et al 2004)}	Yes		5
NM_177343.2	Camk1d Calcium/calmodulin-dependent protein kinase ID	I	D	Yes		10p13 SZ (Freedman et al 2001; Paunic et al 2004),(Faraone et al 1998)	Yes	SZ ^(Vawter et al 2004)	4.5
NM_008124.2	<u>Gjb1</u> Gap junction membrane channel protein beta 1	D	I	Yes	AMY III-PCP	Xq13.1 X-linked Charcot-Marie-Tooth disease (Vondracek et al 2005)	Yes		4
NM_008788.1	Pcolce Procollagen C-proteinase enhancer protein	D	I	Yes	HIP III- PCP NAC III- CLZ	7q22.1 SZ ^(Ekelund et al 2000) BP ^(Detera-Wadleigh et al 1997) EtoH ^(Foroud et al 2000)			4
BB649603	Rian RNA imprinted and accumulated in nucleus	D	I	Yes	AMY Cat I PFC III-PCP	n/a		SZ ^{(Fatemi et al} 2005a)	4
NM_130893.2	Scratch homolog 1, zinc finger protein (Drosophila)	I	D	Yes	110	8q24.3 BP ^(Segurado et al 2003)	Yes		3.5
NM_145978.1	Pdlim2 PDZ and LIM domain 2	D	I	Yes		8p21.2 SZ (Lewis et al 2003),(Straub et al 2002),(Birzustowicz et al 2000),(Blouin et al 1998),(Chiu et al 2002),(Birzustowicz et al 1999)			3
NM_011323.1	<u>Scn8a</u> Neuronal voltage-gated sodium channel alpha subunit (Scn8a)	I	D	Yes		12q13.13	Yes		3
AMYGDALA									
BE859789	2900097C17Rik RIKEN cDNA 2900097C17 gene	D			NAC III-PCP VT IV- CLZ CP IV- CLZ				2
CAUDATE -PI			1	1	1	1-40.0	1		
NM_007428.2	<u>Agt</u> Angiotensinogen	I	D		NAC Cat II AMY III-PCP	1q42.2 SZ ^{(Blackwood et al 2001; Ekelund et al 2001; Paunio et al 2004) BP^(Macgregor et al 2004)}	Yes	EtoH (Lewohl et al 2000)	4.5
NUCLEUS AC	CUMBENS Category II								
NM_009630.1	Adera2a Adenosine A2a receptor	D	I		PFC Cat II AMY III-PCP	22g11.23 SZ ^(Lewis et al 2003) ,(Takahashi et al 2003) SZ, BP ^{(Detera} -Wadleigh et al 1999) BP ^(Kelsoe et al 2001)	Yes	SZ (Kurumaji and Taru 1998)	5
NM_027915.1	Ap2b1 Adaptor-related protein complex 2, beta 1 subunit	D	I		AMY III-CLZ VT IV- CLZ	17q12 BP ^(Dann et al 1997) EtoH ^(Hill et al 2004)	Yes		3.5
VENTRAL TE	GMENTUM Category II		:	:					
NM_010597.2	Kcnab1 Potassium voltage-gated channel, shaker- related subfamily, beta member1	I	D		AMY III-PCP PFC III-PCP PFC IV- CLZ	3q25.31 BPA ^(Badenhop et al 2002)	Yes	SZ ^(Vawter et al 2004) EtoH ^(Sokolov et al 2003)	4.5
NM_010053.1	<u>Dix1</u> Dista⊦less homeobox 1	D	l		PFC III-CLZ AMY IVPCP	2q31.1	Yes	SZ, BP ^{(Kromkamp} et al 2003)	4
NM_024435.2	<u>Nts</u> Neurotensin	D	I		AMY III-PCP CP IV- CLZ PFC IV-PCP	12q21.31	Yes	SZ (Lahti et al 1998) (Wolf et al 1995)	4
NM_010714.1	Lhx9 LIM homeobox protein 9	I	MD		HIP Cat I	1q31.3 EtoH ^(Sun et al 1999) ,(Dick et al 2002b)	Yes		3
NM_013665.1	Shox2 Short stature homeobox 2	I	D			3q25.32 BP, SZA ^(Badenhop et al 2002)		SZ, BP ^{(Kromkamp} et al 2003)	3
AV337888	Pcp411 Purkinje cell protein 4-like 1	l	D		AMY Cat II PFC IV-PCP		Yes	*****	3
BB041180	<u>3110009007Rik</u> RIKEN cDNA 3110009007 gene SIc8a1	1	D		HIP Cat I				2
NM_011406.1	Solute carrier family 8 (sodium/calcium exchanger)1	1	D			2p22.1	Yes		2
NM_011618.1	<u>Tnnt1</u> Troponin T1, skeletal, slow	I	D		NAC III-PCP	19q13.42			2

Category I and II genes changed in opposite directions in 2 out of 3 experiments in PCP and CLZ are shown. I, Increased; D, decreased; MI, moderately increased; MD, moderately decreased; PCP, phencyclidine; Up, upregulated; down, downregulated; PCP, phencyclidine; CLZ, clozapine; PFC, prefrontal cortex; AMY, amygdala; CP, caudate putamen; NAC, nucleus accumbens; VT, ventral tegmentum; SZ, schizophrenia; BP, bipolar disorder. Roman numerals in the multiple brain region data column represent the Category of the gene.

marshfieldclinic.org/genetics) was used with the NCBI Map Viewer web-site to evaluate linkage convergence.

Biological and Tissue (Postmortem Brain, Lymphocytes) Convergence

Information about our candidate genes was obtained using GeneCards, the Online Mendelian Inheritance of Man data-(http://ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM), base as well as database searches using PubMed (http://ncbi.nlm. nih.gov/PubMed) and various combinations of keywords (gene name: schizophrenia, psychosis, bipolar, depression, suicide, dementia, Alzheimer, alcoholism, opiates, cocaine, marijuana, hallucinogens, amphetamines, benzodiazepines, human, brain, postmortem, lymphocytes, fibroblasts). Genes were deemed to have biological convergence if their known biological function was relevant to the pathophysiology of schizophrenia and/or related disorders in human or animal models. Tissue convergence was deemed to occur for a gene if there were published reports of human postmortem brain data (or, rarely, lymphocytes and other tissue data) showing changes in expression of that gene in tissue from patients with schizophrenia and/or another neuropsychiatric disorder that impacts cognition.

GeneSpring Analysis

GeneSpring version 7.2 was used (Agilent Technologies). Unsupervised two-way hierarchical clustering of normalized (Cohen's D effect size) behavioral data [Niculescu et al., 2006] from open-field video-tracking was carried out.

Gene Ontology (GO) Analysis

The NetAffx Gene Ontology Mining Tool (Affymetrix) was employed to categorize the genes in our datasets into functional categories, using the Biological Process ontology branch.

Ingenuity Analysis

Ingenuity Pathway Analysis 3.1 (Ingenuity Systems, Redwood City, CA) was used to analyze the direct interactions of the top candidate genes resulting from our CFG analysis, as well as employed to identify genes in our datasets that are the target of existing drugs.

RESULTS

Based on the changes in response to single drug treatment and co-treatment, we divided our dataset of reproducibly changed genes into four categories (Figs. 1c and 2). Category I comprises genes that are changed by both PCP and clozapine, and the change is prevented (i.e., No Change) by co-treatment with both drugs. Category II comprises genes that are changed by both PCP and clozapine, but those changes are not prevented by co-treatment. Category III comprises genes that are changed by either PCP or clozapine, and the change is prevented (No Change) by co-treatment. Category IV comprises genes that are changed by one of the drugs only, and the changes are not prevented by co-treatment.

Number of Genes

PCP had the highest number of gene changes in the AMY. Clozapine had the highest number of genes changed in the VT. Nevertheless, a disproportionate number of higher-probability, category I genes were in the HIP, consistent with a likely central role of this region in the pathophysiology of schizophrenia and related disorders [Callicott et al., 2005; Gisabella et al., 2005; Holt et al., 2005; Katsel et al., 2005a,b; Benes et al., 2006; Kuroki et al., 2006; Olypher et al., 2006; Tanabe et al., 2006; Vita et al., 2006] (Fig. 2).

Top Findings

The top scoring genes in Categories I and II are shown in Table I. Figure 3 summarizes the assigned empirical probability score based on the multiple internal and external lines of evidence. At the top of our list, with 6 out of 6 lines of evidence, we have 14 genes: two from the PFC-GABBR1 (gamma-amynobutyric acid (GABA-B) receptor, 1)-located at 6p22.1 [Hwu et al., 2000; Hisama et al., 2001; Turecki et al., 2001; Schulze et al., 2004; Zai et al., 2005a,b]; and MAL (myelin and lymphocyte protein)-located at 2g11.1 [Chen et al., 1998; Hakak et al., 2001; DeLisi et al., 2002; Straub et al., 2002; Lewis et al., 2003; Aston et al., 2005; Middleton et al., 2005]; six from the AMY-gamma-aminobutyric acid (GABA-A) receptor, subunit alpha 1 (GABRA1) located at 5q34 [Sklar et al., 2004; Petryshen et al., 2005a], glutamate decarboxylase 2 (GAD2) located at 10p12.1 [Maziade et al., 2001; McInnis et al., 2003], proteolipid protein (myelin) 1 (PLP1) located at Xq22.2 [Qin et al., 2005a], myelin basic protein (MBP)-located at 18q23 [Straub et al., 2002; Lewis et al., 2003], myelin-associated oligodendrocytic basic protein (MOBP) located at 3p22.2 [Lewis et al., 2003], and glial fibrillary acidic protein (GFAP)located at 17q21.31 [Lewis et al., 2003]; one from the AMY and VT-SYN2 (synapisn II) located at 3p25.2 [Chen et al., 2004a; Paunio et al., 2004; Lee et al., 2005]; one from the AMY and CP-CNP (2',3'-cyclic nucleotide 3' phosphodiesterase) located at 17q21.2 [Lewis et al., 2003; Peirce et al., 2006]; one from the NAC-potassium inwardly-rectifying channel, subfamily J, member 4 (KCNJ4) located at 22q13.1 [Coon et al., 1994; Kelsoe et al., 2001]; one from the NAC and HIP-lipoprotein lipase (LPL) located at 8p21.3 [Brzustowicz et al., 2000; Chiu et al., 2002; Lewis et al., 2003; Straub et al., 2002]; and two from the VT-tachykinin, precursor 1 (TAC1) located at 7q21.3 [Ekelund et al., 2000; Yan et al., 2000; McInnis et al., 2003], and glutamate receptor, ionotropic, AMPA 2 (GRIA2) located at 4q32.1 [Hovatta et al., 1999; Straub et al., 2002; Ekholm et al., 2003; Willour et al., 2003].

Table II shows all the category I and II genes that are changed in opposite directions by PCP and clozapine. We reasoned that genes that are changed in opposite directions by a disease mimicking agent (PCP) and a disease treating agent (Clozapine) may be of particular interest, current external lines of evidence aside and total score notwithstanding.

Table III shows the categorization of the top candidate genes from Tables I and II into different biological roles categories of interest.

Other investigators have previously implicated a number of the above discussed genes, individually or as part of functional groups, in various biological and genetic contexts germane to the pathophysiology of schizophrenia and related disorders (Tables I and II) [Gisabella et al., 2005; Harrison and Weinberger, 2005; Torrey et al., 2005; Carlsson, 2006; Mirnics et al., 2006]. Our results, identifying these genes as top candidate genes, are thus a strong validation of the heuristic value and internal consistency of the approach we have used. Moreover, they outline networks of potentially co-acting genes (Fig. 5a), and support an important role for these pathways in schizophrenia and related disorders.

GABA Neurotransmission

Our work identified as top candidate genes for schizophrenia three genes involved in GABA neurotransmission: GABRA1, GABBR1, and GAD2 (Table I; Fig. 3). GABRA1 was previously

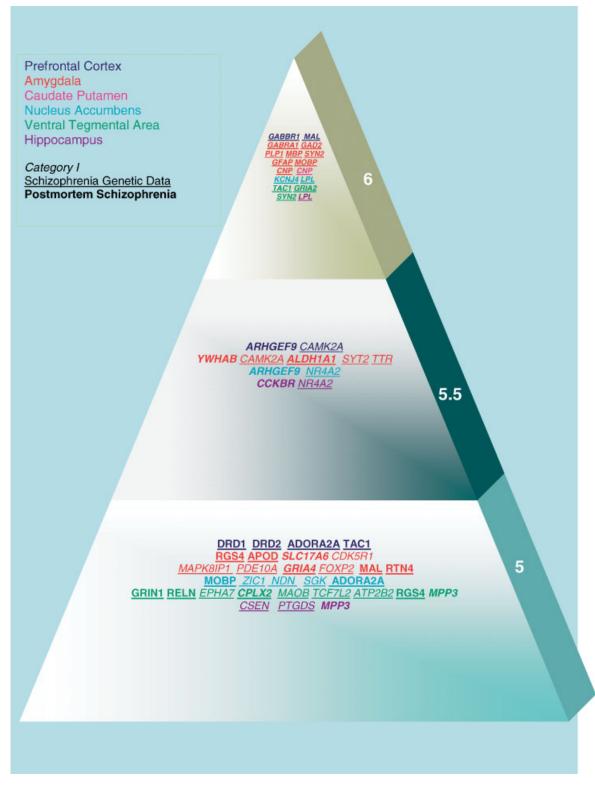


Fig. 3. Categories I and II candidate genes. Pyramid generated by the tabulation of independent converging lines of evidence. Italic—Category I genes. Underlined—schizophrenia genetic data. Bold—schizophrenia postmortem data. For full description of gene symbols see Table I.

reported to be increased in postmortem brains from schizophrenia patients [Ohnuma et al., 1999]. It has also recently been implicated in schizophrenia by human genetic linkage, association and preliminary gene expression studies in peripheral blood leukocytes [Petryshen et al., 2005a]. GABBR1 has been putatively implicated by human genetic association studies in both schizophrenia [Zai et al., 2005b] and obsessivecompulsive disorder [Zai et al., 2005a]. GAD2 (GAD65) was

TABLE III. Top Candidate Genes and Their Biological Roles

Gene Accession	Gene / Name	Brain Region (Drug-Category)	Gene Accession	Gene / Name	Brain Region (Drug-Category)
Numbers	ated serves		Numbers		
GABA rel	ated genes		Glia/Myeli		
NM_010250.1	Up GABRA1_pamma-aminobutyric acid (GABA-A) receptor, subunit alpha	AMY (I) / VT (CLZ-III) / NAC (PCP-III) / CP (PCP-III)		Up MBP_myelin basic protein	AMY (I) / PEC (PCP-III) AMY (I) / PEC (PCP-III)
AF326550.1	GAD2_glutamic acid decarboxylase 2	AMY (I) / NAC (PCP-III)	M15442.1 BB183081	PLP1 proteolipid protein (myelin) GFAP glial fibrillary acidic protein	AMY (I) / NAC (CLZ-III)
NM_019439.1	Down GABBR1 gamme-aminobutyric acid (GABA-B) receptor, 1	PFC (I) / AMY (CLZ-III) / NAC (PCP-III) / VT (CLZ-III)	NM_008885.1 NP_032640.1	PMP22 peripheral myelin protein ■ MOBP myelin-essociated oligodendrocytic basic protein	AMY (I) AMY (I) / NAC (II) / PFC (PCP-III)
BB380620	ARHGEF9_Cdc42 guarnine nucleotide exchange factor (GEF) 9	PEC (I) / NAC (I) / AMY(CLZ-III)	NM_009923.1	Down CNP 2'.3'-cyclic nucleotide 3' phosphociesterase	CP (I) / NAC (PCP-III) /PFC (PCP-III) / VT (CLZ-III)
BQ175863	GABRA5 gamma-aminobutyric acid (GABA) A receptor, alpha 5 🔳 📃	ΫT (II) / HÌΡ (PCP-III)	AK019046	MAL_myelin and lymphocyte protein, T-cell differentiation protein	PEC (I) / AMY (II) / VT (PCP- III)
Glutamate	e related genes		Synaptic f	function genes	
NM_019691.1	Up GR8A4, glutamate receptor, ionetrophic, AMPA 4)	AMY (I) / NAC (II)	NM_013681.1 NM_009946.1	Down SYN2 synapsin I CPLX2 complexin 2	AMY (I) / VT (I) / CP (PCP-III) VT (I) AMY (I) / CP (I) / VT (II) /
NM_013540.1	Down GRIA2_glutamate receptor, ionotropic, AMPA 2	AMY (I)	1420418_at	SYT2 synaplotagmin 2 migration/neurite growth	NAC (PCP-III)
NM_008169	GRIN1 glutamate receptor, ionotropic, N-methyl D-aspartate 1	VT (I)		Up	VT (0 / HIP II
NM_008165	GRIA1 glutamate receptor, ionotropic, AMPA1 (alpha 1)	VT (II) / NAC (CLZ-III) AMY (II)	BB075797	EPHA7_EPH receptor A7	
		AMT (II)	NM_011261.1	Down RELN_reelin	VT (II) / PFC (CLZ-III)
			88074430	Up/Down NDN rectin	NAC (I) / AMY (CLZ-III) / PFC (PCP-III) / VT (CLZ-III)
			AK003046	NRN1 neuritin 1	NAC (I) VT (I) / AMY (PCP-III)
Other neu	urotransmitter related genes		BC026833.1 Transcript	GJB1_gap junction membrane channel protein beta 1 tion Factor	and the second second
	Up			Up	NAC (I) / AMY (II) / HIP (II)/
BB549292 NM_007744	MAOB monoamine oxidase B COMT catechol-O-methyltransferase	VT (I) VT (CLZ-III)	BB361162 NM_013613 2	ZIC1_Zinc finger protein of the cerebellum 1 NR4A2/Nurr1_Nuclear receptor subfamily 4, group A, member	CP (II) / PFC (CLZ-III) NAC (I) / HIP (I) / VT (II) / PFC (PCP-III)
	Down	PFC(II) /NAC(II) /AMY(PCP-III)	NM_010053.1	Up/ Down DLX1 distal-less homeo box 1	VT (II) / PFC (CLZ-III)
BG311385 BE957273	ADORA2A adenosine A2a receptor DRD1 dopamine receptor D1	PFC (II) / AMY (PCP-III)	NM_013665.1	SHOX2 short stature homeobox 2	VT (II)
NM_010077	DRD2 dopamine receptor 2	PFC (II) / AMY (PCP-III)	BB175494	TCF7L2 transcription factor 7-like 2 (T-cell specific, HMG-box)	VT (I) / AMY (PCP-III) / CP (PCP-III)
1420679_a_at	YWHAB tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, beta polypeptide	AMY (I) / NAC (PCP-III) / PFC (CLZ-III)	BC024556.1 BE947440	PDLIM2 PDZ and LIM domain 2 SCRT1 scratch homolog 1, zinc finger protein (Drosophila)	VT (0) VT (0) VT (0) / HIP (0)
Signal tra	nsduction genes		1441313 x at	LHX9 LIM homeobox protein 9	
BB476448	Up CAMK/2A saletymicalmed dia dependent proble kinase il	AMY (I) / PEC (I) / VT (II) /	Regulator	y Enzymes /Carriers	ANY OLD NACE OF
	CAMK2A_calcium/calmodulin-dependent protein kinase II alpha	NAC (CLZ-III) / CP (CLZ-III)	NM_013467.1	ALDH1A1_aldehyde dehydrogenase family 1, subfamily A1	AMY (I) / NAC (II) HIP (I) / VT (CLZ-III) AMY (II) /HIP (CLZ-III)/
AF109769.1	MAPK8IP1 mitogen activated protein kinase 8 interacting protein 1	AMY (I) / NAC (PCP-III) / PFC (PCP-III)	1449129_a_at NM_007470.1	CSEN_cateniin, preseniin binding protein, EF hand APOD_apolipoprotein D	PFC (CLZ-III) / VT (PCP-III) HIP (I) / NAC (II) / AMY (III-
AW123977	PDE10A phosphodiesterase 10A	AMY (I) / PFC (II) / CP (CLZ- III) / VT (CLZ-III)	NM_008509.1	LPL lipoprotein lipase	CLZ)
NM_009062	RGS4_ regulator of G-protein signalling 4 Indexes	AMY (I) / VT (II) / HIP (CLZ-III) / PFC (CLZ-III)	AK018763 1423860_a1	Down AGT_angiotensinggen III PTGDS_prostaglandin D2 synthase (brain)	CP (II) /NAC (II) /AMY(PCP4I HIP (I) / VT (II) / AMY (PCP4I
BG071068	Up/down GNB1 guanine nucleotide binding protein (G protein).	NAC (I) / AMY(II) / PFC (PCP-	1420000_01		/ CP (PCP-III)
8G071931	beta polypeptide 1) CAMK1D csiciam/calmodulin-dependent protein kinase ID	un VT (t)	AV343478 BB250811	Up/ Down ATP282 ATPase, Ca++ transporting, plasma membrane 2 POOLCE procellagen C-proteinase enhancer protein	VT (I) / NAC (CLZ-III) VT (I) / HIP (PCP-III) / NAC (CLZ-III)
lon chann	nels				
U11075	Up <u>KCNJ4</u> potassium inwardly-rectifying channel, subfamily J, member	NAC (I) / PFC (PCP-III)	Regulato	Up	AMY (I) / VT (I) / PFC (PCP-II / CP (PCP-III)
AV221826	Up/down SCN8A, Neuronal voltage-gated sodium channel aplpha subunit	VT (D	BB649603 AF224264	RIAN FINA imprinted and accumulated in nucleus FUS fusion, derived from t(12;16) malignant liposarcoma (human)	AMY (I) / PFC (I) / NAC (PCP III) VT (I)
1437675_st	(Scn8a) SLC8A1 solute carrier family 8 (sodium/calcium exchanger).	VT 00	AK013588.1	ELAVL4 ELAV (embryonic lethal, abnormal vision, Drosophile) - like 4 (Hu antigen D)	PFC (I) / NAC (PCP-III) / VT
1448468_a_at	member 1 KCNAB1 potassium voltage-gated channel, shaker-related subfamily, bata member 1	VT 00	AK020483	MALAT1 Metastasis associated lung adenocarcinoma transcript 1	(PCP-III)
Clock ger			AV015833 AF022957.1	MEG3 Maternally expressed gene 3 ANP32A, acidic (leucine-rich) nuclear phosphoprotein 32	PFC (I) / VT (II) / AMY (CLZ- III) / NAC (PCP-III)
	Down	VT (D	Pr 022007.1	family, member	AMY (I) / PFC (II) / NAC (PCP III)
U77967	Down NPAS1 neuronal PAS domain protein 1 Up				m)
	RORA RAR-related orphan receptor alpha	AMY (I), VT (CLZ-III)			

Additional Evidence:
Linkage
Postmortem

Genes from Categories I and II were classified into biological groups of interest previously reported to have relevance to the pathophysiology of schizophrenia and related disorders. Up, upregulated; down, downregulated; PCP, phencyclidine; CLZ, clozapine; PFC, prefrontal cortex; AMY, amygdala; CP, caudate putamen; NAC, nucleus accumbens; VT, ventral tegmentum; HIP, hippocampus. Roman numerals in the brain region data column represent the Category of the gene.

reported elevated in the cortex of subjects with schizophrenia [Dracheva et al., 2004]. Other GABA related genes among our Category I and II genes include ARHGEF9 and GABRA5 (Table III), as well as GABRA3 and SLC6A13 (GABA transporter) (Table VII). Additional GABA related genes from our complete datasets include GABRA4, GABRB2, GABRB3, and GABRG2 (see supplementary online information). Schizophrenia patients experience deficits in many aspects of cognition and perception. EEG studies suggest that abnormalities in gamma band activity may underlie some of these deficits [Symond et al., 2005; Wynn et al., 2005]. Networks of GABAergic neurons are key elements in the generation of gamma oscillations in the brain [Vida et al., 2006].

GO ANALYSIS- BIOLOGICAL PROCESSES	Category I genes	Category II genes	Category III genes	Category IV genes
1. Cellular Physiological Process	176		1709	294
2. Cell Communication	83	88	872	
3. Metabolism	116		711	
4. Cellular Biological Process		160	488	
5. Development		58	260	94
6. Organismal Physiological Process	46		145	
7. Behavior		17	159	36
8. Cell Death	11	10	139	12
9. System Development	32		89	12
10. Morphogenesis	27		96	
	20		93	
11. Organ Development			11	
12. Response to Biotic Stimulus	14	6	90	11
13. Embryonic Development	6		105	
14. Regulation of Biological Process	75			
15. Localization	59			
16. Sexual reproduction		2	83	1
17. Response to external stimulus	9	8	58	7
18. Response to Abiotic Stimulus	5	9	61	9
19. Homeostasis 20. Extracellular Structure	4	8	61	14
Organization and Biogenesis	1	1	25	4
21. Rhythmic Process	3	2	13	3
22. Pattern Specification	5		12	
23. Locomotory Behavior	12			
24. Response to Endogenous Stimulus	3		12	
25. Response to Stress	8			
26. Coagulation		3	8	1
27. Tissue Development			11	
28. Growth	7			
29. Membrane Fusion	2	1	5	
30. Reproductive Physiological Process				2
31. Adult Behavior	4			
32. Sex Differentiation	1		4	
33. Appendage Development	1		3	
34. Post-embryonic Development	1		3	
35. Segmentation	1		3	
36. Lysogeny			3	1
37. Reproductive Process	2			
38. Tube Development 39. Symbiosis, mutualism through			3	
parasitism			2	
40. Feeding behavior	1			
41. Mechanosensory Behavior	1			
42. Metamorphosis 43. Pigmentation During			1	
Development			1	

TABLE IV. Gene Ontology Analysis

Biological processes obtained from Gene Ontology analysis of our complete dataset. Genes from all the different brain regions and categories (Fig. 2c) were subjected to analysis.

Glutamate Neurotransmission

Our work has identified as a top candidate gene for schizophrenia GRIA2 (Table I and Fig. 3). GRIA2 levels were previously reported to be changed in postmortem brains from schizophrenia patients in microarray [Vawter et al., 2002a] and protein studies [Gupta et al., 2005]. Other glutamate related genes among our Category I and II genes include GRIA4, GRIN1 and GRIA1 (see Tables I and III). As such, in addition to the well known dopaminergic receptors (Table III), our work supports key molecular aspects underpinning the glutamatergic hypothesis of schizophrenia pathophysiology.

Myelin/Glia Related Genes

An emerging body of work over the last 5 years has implicated myelin/glia related dysfunction in schizophrenia [Hakak et al., 2001; Hof et al., 2002; Hof, 2003; Tkachev et al., 2003; Dracheva et al., 2004; Katsel et al., 2005a,b; Kubicki et al., 2005a,b; Aberg et al., 2006a,b; Georgieva et al., 2006; Peirce et al., 2006]. Our work has identified as top candidate genes for schizophrenia six genes involved in myelin/glia function -CNP, MAL, MBP, PLP1, MOBP, and GFAP (Table I and Fig. 3), and thus confirms and reinforces previous findings related to the role of white matter abnormalities in general, and of these genes in particular, in the pathophysiology of schizophrenia. Notably, some of the initial findings were reported primarily based on human postmortem brain studies, which face challenges such as genetic heterogeneity, variable environmentally induced changes, and potential aging related and agonally induced artifacts [Vawter et al., 2006]. Our acute treatment pharmacogenomic model in isogenic animals does not suffer from those caveats. It is thus reassuring that multiple approaches converge on the same genes. This convergence instills a high degree of confidence that these findings are not artifactual, but rather should be vigorously pursued as valid molecular underpinnings of the pathophysiology of schizophrenia.

Of note, these glia/myelin related genes are reported to be altered in expression also in bipolar disorder (MAL, MBP, PLP1, MOBP, GFAP), depression (CNP, MAL, PLP1, MOBP, GFAP), and alcoholism (CNP, MAL, MBP, PLP1, MOBP, and GFAP) postmortem brains. The commonality of alterations in glia/myelin genes, primarily a decrease in expression, across a spectrum of neuropsychiatric disorders suggests that hypofunction of glia/myelin systems may be a sensitive if not specific common denominator for mental illness. Of note, omega-3 polyunsaturated fatty acids may directly target this glia/ myelin abnormality [Salvati et al., 2004]. Omega-3 fatty acids have been reported to be clinically useful in the treatment of both psychotic disorders [Peet and Stokes, 2005] and mood disorders [Parker et al., 2006]. Deficits in omega-3 fatty acids have been linked to increased aggression and depression in both animal models [DeMar et al., 2006] and humans [Zanarini and Frankenburg, 2003].

Candidate Biomarker Genes

Our work has also identified two genes that were recently reported to be changed in both postmortem brain and lymphocytes from schizophrenia patients, BTG1 and SFRS1 [Glatt et al., 2005], as well as a gene reported changed in lymphocytes from a multiplex schizophrenia pedigree, GNAO1 [Vawter et al., 2004]. These three genes, in our dataset, were Category III genes changed in the VT by clozapine and showing no-change in PCP/clozapine co-treatment. Other candidate biomarker genes identified in those reports were not seen by us in the current analysis of brain microarray data. However, more extensive studies comparing brain and blood gene expression profiles in our animal model are warranted for definitive conclusions. While providing additional independent support for those three potential biomarker genes for schizophrenia, our work so far also points to the utility of cross-matching different lines of evidence with an approach such as Convergent Functional Genomics in order to pick and prioritize candidate gene results from potentially noisy human postmortem brain and lymphocyte datasets, for future pursuit and validation.

Behavioral Correlates of Gene Expression

We hypothesized a priori that genes that would be changed in expression by both PCP and clozapine single-drug treatment might show changes in opposite directions, that is, increased in one case, decreased in the other, and vice versa. This proved not to be the case for the majority of top scoring candidate genes. In retrospect, our hypothesis was simplistic. The behavioral data (Fig. 4) of the mice on PCP and the mice on clozapine is illustrative in this regard. Center Time (time spent in the center quadrant of the open filed), along with Total Crossings (from one quadrant to the other of the open field), were identified by a phenotypic clustering analysis of behavioral measures (PhenoChipping) [Niculescu et al., 2006] as being one of the measures changed initially in opposite directions the most by PCP and clozapine, with the co-treatment group showing an intermediary phenotype (Fig. 4a). Whereas Total Crossings may be a less specific reflection of the activating properties of PCP and tranquilizing properties of clozapine, perhaps germane to the overlap with bipolar phenomenology (see also below and Table VIII), Center Time may be a more specific reflection of disrupted cognition, as cognitively intact mice should avoid the potentially dangerous center area of an open-field due to ancestral self-preservation mechanisms. This result illustrates the power of our unbiased approach in identifying simple putative mouse behavioral correlates of disrupted cognition. While the treatment group phenotypes were clearly different in the initial assessment at 30 min following injection (Figs. 4a,b), showing the activating, psychomimetic effects of PCP and the tranquilizing, antipsychotic effects of clozapine, and with the co-treatment group displaying an intermediary phenotype, by 24 hr the behavioral parameters were more similar, pointing to the effects of clozapine having worn off and suggesting the possibility of a rebound change in levels in it is target genes (Fig. 4c). Nevertheless, more extensive time courses and gene expression-behavioral correlation work needs to be carried out, in both groups of animals [Whitfield et al., 2003] and individual animals, in order for a complete picture to emerge linking different behavioral parameters with changes in specific genes or groups of genes. It is to be noted that a number of Category I and II candidate genes do show opposite changes with PCP and clozapine, as captured by our 24 hr time point (Table II). The relative influence of gene expression kinetics in response to drug versus genuine biological relevance to schizophrenia remains to be determined, as few of them have multiple external lines of evidence supporting them so far, and thus score lower overall than the genes in Table I.

Gene Ontology Analysis Results

Gene Ontology analysis of the complete dataset—categories I, II, III, and IV (Table IV), revealed that the top 25 categories on the list, in that order, were genes having to do with: (1) brain cell functions (cellular physiological processes, metabolism, cellular biological processes, cell death), (2) communication between brain cells (cell communication), (3) brain development (development, system development, morphogenesis,

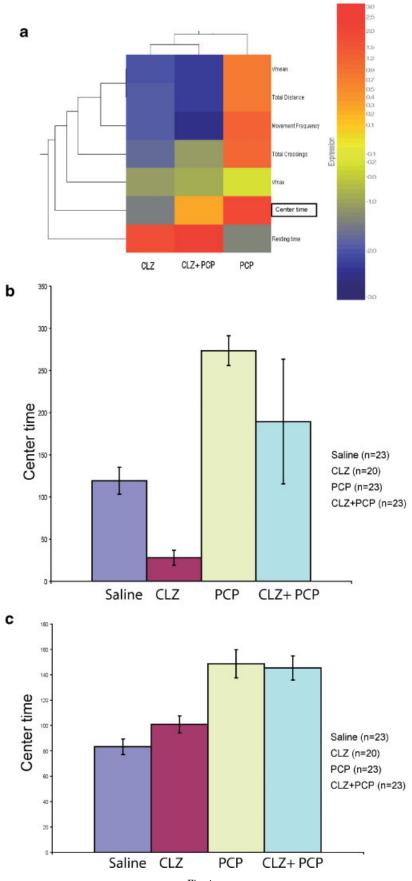


Fig. 4.

organ development, embryonic development, localization, extracellular structure organization, pattern specification), (4) integration of organismal physiological functions (organismal physiological processes, response to biotic stimuli, regulation of biological processes, response to abiotic stimuli, homeostasis, rhythmic processes, response to endogenous stimuli), (5) external behavioral responses (behavior, sexual reproduction, locomotor behavior), and (6) reactivity to the environment (response to external stimuli, response to stress). This is consistent with a model of schizophrenia as being primarily a disorder of brain cellular functioning and communication, with a strong developmental component, impacting the integration of organismal physiological functions, external behavioral responses, and, to a lesser extent, reactivity to the environment (Fig. 5b).

Our approach described thus far is to generate data in an appropriate discovery paradigm, and let the data coalesce into possible mechanistic interpretations. An opposite, hypothesisdriven approach for mining our dataset is to interrogate if genes related to known biological mechanisms of interest (Table III), linkage loci (Table V), or postmortem findings (Table VI) are present in it—spanning the spectrum from the more sensitive (biological) to the more specific (postmortem) external corroborative lines of evidence.

Biological Roles

An interrogation of our top candidate genes from Categories I and II, for classification in functional groups that had been previously implicated or hypothesized to have relevance to the pathophysiology of schizophrenia and related disorders, yielded genes related to GABA, glutamate, other neurotransmitters function (such as DRD1, DRD2, COMT), neuropeptides, glia/myelin function, synaptic function, ion channels, signal transduction (such as RGS4), regulatory enzymes, regulatory RNAs, neuronal migration/neurite growth (such as RELN/Reelin), transcription factors involved in brain development (such as NR4A2/Nurr1), and circadian clock genes (such as NPAS1 and RORA) (Table III).

Of note, circadian and sleep abnormalities are a common and relatively underappreciated feature of schizophrenia [Mattai et al., 2006]. NPAS1 has been implicated in mice in behavioral and neurochemical abnormalities (reduction in Reelin) consistent with schizophrenia [Erbel-Sieler et al., 2004]. RORA has been implicated in mice in regulating endocrine responses to stress and corticosterone circadian rhythms [Frederic et al., 2006]. Additionally, the circadian pacemaker gene PER1 has been reported to be altered in expression in postmortem brains of schizophrenics [Aston et al., 2004]. PER1 is one of the lowerpriority genes in our dataset (in VT, Category IV-changed by clozapine only). Other lower priority clock genes in our dataset are CSNK1D (in VT, Category III-changed by clozapine, and the change is prevented by co-treatment with PCP), RORB (NAC, Category III-changed by PCP, and the change is prevented by co-treatment with clozapine; in VT, Category III—changed by clozapine, and the change is prevented by co-treatment with PCP), and DBP (in CP, Category IV-changed by PCP only).

Cross-Validation With Human Linkage Loci

Interrogating our dataset for genes that map to the linkage loci reported by recent meta-analyses for schizophrenia and bipolar disorder yielded a series of candidate genes at those loci (Table V) that may help prioritize future candidate gene research for each of the loci.

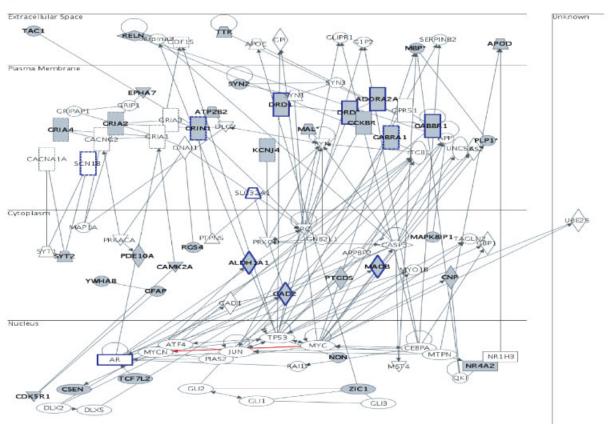
Cross-Validation With Human Postmortem Findings

Lastly, an interrogation of our dataset with genes that have previously been reported in the literature as altered in postmortem brains from patients with schizophrenia, as well as bipolar disorder, depression, and other brain disorders that affect cognition, confirmed in our dataset some of those earlier findings (Table VI). This cross-validation, on the one hand reinforces the validity of our approach, and on the other hand it reduces the likelihood that those particular postmortem findings are methodological or gene-environment interactions artifacts of working with post-mortem human tissue. Notably, we reproduce with our animal model data a series of genes recently reported by some of us to be changed in the dorsolateral PFC of schizophrenia subjects [Glatt et al., 2005] (such as ARHGEF9, LPL, LPHN1, FAIM2, RYR2-Table VI, as well as the brain-blood candidate biomarkers BTG1 and SFRS1 mentioned earlier).

DISCUSSION

We have used a comprehensive Convergent Functional Genomics approach for identifying high probability candidate genes, pathways and mechanisms for schizophrenia, and prioritizing them for future research, by the integration in a Bayesian fashion of multiple independent converging lines of evidence.

Limitations and Confounds


An acute treatment model like the one we are using is not necessarily inductive to assessing the long-term changes associated with schizophrenia, such as long-term cognitive changes as well as structural changes apparent on imaging. While we have no direct way of knowing if some of the genes we captured with our screen are involved or not in setting in motion such long term changes, it is to be noted that some of these gene changes have also been reported in postmortem brains of schizophrenia, bipolar disorder and dementia patients (Table VI), presumably affecting cognition. Moreover, we have candidate genes in our dataset with roles in brain infrastructure, including neurotrophic and myelin related genes (Table III). More chronic treatments should, nevertheless, be pursued to verify and expand the findings presented in this paper.

Different combinations of psychomimetic and anti-psychotic agents could be used in a comprehensive functional pharmacogenomic approach such as we have described. They could conceivably lead to different results, which would be interesting and welcome, since it is unlikely we are capturing with our model the full spectrum of gene expression changes and mechanisms involved in schizophrenia. However, if those drug combinations indeed mimic and modulate the same core phenomenology, the Venn diagrams of the overlap between different drug treatments will be of high interest in terms of identifying the key molecular players involved in the effects, as opposed to those involved in the (very different) side-effects of the individual drugs.

It is to be noted that our experimental approach for detecting gene expression changes relies on a single methodology,

Fig. 4. Behavioral correlates of phencyclidine and clozapine treatment. **a**: Clustering of mouse open field video-tracking behavioral phenotype data, in the first 30 min after injection. Normalized (Cohen's D effect size) behavioral data was imported into GeneSpring 7.2, where it was analyzed using standard unsupervised two-way hierarchical clustering algorithms. Red-increased, blue-decreased compared to saline controls. **b**: Center time data from video-tracking, first 30 min following injections. **c**: Center time data from video-tracking, 30 min interval at the 24 hr time point following injections, immediately prior to brain harvesting for gene expression studies.

а

b

Fig. 5. Candidate genes, pathways and mechanisms. **a**: Top candidate genes and their relationships, using Ingenuity Pathway Analysis 3.1. Genes highlighted in grey are candidate genes from our dataset. Genes highlighted with blue are targets of existing drugs. **b**: Gene Ontology (GO) analysis-derived model of biological processes and mechanisms in schizophrenia. Numbered categories refer to GO analysis categories from Table IV.

1	-	Schizophrenia
Loci	Symbol	Description
1p13.3 - 1g23.3		
Lewis et al;2003		
1p13	Ovgp1	oviductal glycoprotein 1
1p13.1	Atp1a1	ATPase, Na+/K+ transporting, alpha 1
ipio.i	Aprai	polypeptide
1p13.1	Nhlh2	nescient helix loop helix 2
1p13.1	Tspan2	tetraspanin 2
1p13.3	Ampd2	adenosine monophosphate deaminase 2 (isoform
1010.0	Milpuz	L)
1p13.3	Kcna3	potassium voltage-gated channel, shaker-related
10.0	<u>Ingitude</u>	subfamily, member 3
1p21.2	Gpr88	G-protein coupled receptor 88
1q21.2	Pip5k1a	phosphatidylinositol-4-phosphate 5-kinase, type I,
	Lipiticia	alpha
1021.3	Rps27	ribosomal protein S27
1023.1	HapIn2	hyaluronan and proteoglycan link protein 2
1q23.3	Rgs4	regulator of G-protein signaling 4
1023.3	Rxrg	retinoid X receptor gamma
1q24.2	E5	coagulation factor V
1q25.3	ler5	immediate early response 5
1q23.3	Olfml2b	olfactomedin-like 2B
2p12-2q22.1		
ewis et al;2003		
2p11.2	Tmsb10	thymosin, beta 10
2q11.1	Mal	myelin and lymphocyte protein, T-cell
2911.1	IVIGI	differentiation protein
2011.1	Csen	calsenilin, presenilin binding protein, EF hand
2q11.1	<u>Usen</u>	
2g12.2	Ecrg4	transcription factor Esophageal cancer related gene 4 protein
2q14.1	Dpp10	dipeptidylpeptidase 10
2q14.2	Inhbb	inhibin beta-B
2q22.1-	minoo	minom octo-o
2023.3		
_ewis et al;2003		
2q22.3	Zfhx1b	zinc finger homeobox 1b
2023.3	Tnfaip6	tumor necrosis factor alpha induced protein 6
3p25.3 -	maipo	tumor necrosis lactor alpha induced protein o
3p22.1		
Lewis et al;2003		
3p22.2	MOBP	myelin-associated oligodendrocytic basic protein
3p22.3	Dcamkl3	doublecortin and CaM kinase-like 3
3024.2	Rarb	retinoic acid receptor, beta
3p24.3	Satb1	special AT-rich sequence binding protein 1
3p25	Syn2	synapsin II
3p25.1	Sh3bp5	SH3-domain binding protein 5 (BTK-associated)
3p25.3	Atp2b2	ATPase, Ca++ transporting, plasma membrane 2
5q23.2 - 5q34	mproz	Arr use, ou · runsporting, plasma memorane z
ewis et al;2003		
5023.3	8-Sep	septin 8
5q23.5	Hspa4	heat shock protein 4
5031.2	Egr1	early growth response 1
5q32	Camk2a	calcium/calmodulin-dependent protein kinase II
orior	Statista	alpha
5q33.1	Snarc	secreted acidic cysteine rich glycoprotein
5q33.1	Sparc G3bp	Ras-GTPase-activating protein SH3-domain
5q55.1	0300	binding protein
5033.2	Gria1	glutamate receptor, ionotropic, AMPA 1
	Gabra1	gamma-aminobutyric acid (GABA-A) receptor,
5a34_a35	Gabial	subunit alpha 1
5q34-q35		Suburn alpha i
opter - 6q23.2		
opter - 6q23.2 .ewis et al;2003	Cdkolo	cyclin donondont kinges iskikites 14 /D241
Spter - 6q23.2 ewis et al 2003 6p21.31	Cdkn1a Cabbr1	cyclin-dependent kinase inhibitor 1A (P21)
6pter - 6q23.2 .ewis et al.2003 6p21.31 6p22.1	Gabbr1	gamma-aminobutyric acid (GABA-B) receptor, 1
6pter - 6q23.2 .ewis et al.2003 6p21.31 6p22.1 6p22.2	Gabbr1 Hist1h1c	gamma-aminobutyric acid (GABA-B) receptor, 1 histone 1, H1c
6pter - 6q23.2 ewis et al.2003 6p21.31 6p22.1 6p22.2 6p23	Gabbr1 Hist1h1c Cd83	gamma-aminobutyric acid (GABA-B) receptor, 1 histone 1, H1c CD83 antigen
6pter - 6q23.2 _ewis et al.2003 6p21.31 6p22.1 6p22.2 6p23 6p25.1	Gabbr1 Hist1h1c Cd83 Nrn1	gamma-aminobutyric acid (GABA-B) receptor, 1 histone 1, H1c CD83 antigen neuritin 1
6pter - 6q23.2 ewis et al.2003 6p21.31 6p22.1 6p22.2 6p23 6p25.1 6q15	Gabbr1 Hist1h1c Cd83 Nrn1 Cnr1	gamma-aminobutyric acid (GABA-B) receptor, 1 histone 1, H1c CD83 antigen neuritin 1 Cannabinoid receptor 1 (brain)
6pter - 6q23.2 .ewis et al.2003 6p21.31 6p22.2 6p23 6p25.1 6q15 6q16.1	Gabbr1 Hist1h1c Cd83 Nrn1 Cnr1 Epha7	gamma-aminobutyric acid (GABA-B) receptor, 1 histone 1, H1c CD83 antigen neuritin 1 Cannabinoid receptor 1 (brain) Eph receptor A7
6pter - 6q23.2 .ewis et al.2003 6p21.31 6p22.1 6p23 6p25.1 6q15 6q16.1	Gabbr1 Hist1h1c Cd83 Nrn1 Cnr1 Epha7 Fut9	gamma-aminobutyric acid (GABA-B) receptor, 1 histone 1, H1c CD83 antigen neuritin 1 Cannabinoid receptor 1 (brain) Eph receptor A7 fucosyltransferase 9
6pter - 6q23.2 Lewis et al:2003 6p21.31 6p22.1 6p22.2 6p23 6p25.1 6q15 6q16.1 6q16.1 6q21	Gabbr1 Hist1h1c Cd83 Nrn1 Cnr1 Epha7 Fut9 Popdc3	gamma-aminobutyric acid (GABA-B) receptor, 1 histone 1, H1c CD83 antigen neuritin 1 Cannabinoid receptor 1 (brain) Eph receptor A7 fucosyltransferase 9 popeye domain containing 3
5pter - 6q23.2 .ewis et al.2003 6p21.31 6p22.1 6p23 6p25.1 6q15 6q16.1	Gabbr1 Hist1h1c Cd83 Nrn1 Cnr1 Epha7 Fut9	gamma-aminobutyric acid (GABA-B) receptor, 1 histone 1, H1c CD83 antigen neuritin 1 Cannabinoid receptor 1 (brain) Eph receptor A7 fucosyltransferase 9

TABLE V. Candidate Genes i	n our Dataset Mapping to Loci	Identified by Meta-Analyses	of Human Genetic Linkage Data
TIDDE V. Culturate Genes in	i our Dutubet mupping to hoer	facilitiea by fileta filiary see	of Human Genetic Linnage Data

2	•	
6q23.2	Ctaf	connective tissue growth factor
8p22 - 8p21.1		sector a new permitian
Lewis et al;2003		
8p21	Nefl	neurofilament, light polypeptide
8p21.2	Pdlim2	PDZ and LIM domain 2
8p21.3	Lpl	lipoprotein lipase
10pter - 10p14		
Lewis et al;2003		
10p15	Gata3	GATA binding protein 3
11q22.3 -		
11q24.1		
Lewis et al;2003	Cried	alutemete recenter legetrechie AMDA ()
11q22 11q23	Gria4	glutamate receptor, ionotrophic, AMPA 4) Down syndrome cell adhesion molecule-like 1
11q23.1	Dscaml1 Cryab	crystallin, alpha B
11q23.2	Drd2	dopamine receptor 2
11023.3	TagIn	transgelin
11q23.3	Scn4b	sodium channel, type IV, beta polypeptide
11g24	Eva1	epithelial V-like antigen 1
11q24.2	Nrgn	neurogranin
15q21.3 -		
15q26.1		
Lewis et al;2003		
15q21.1	Gatm	glycine amidinotransferase (L-arginine:glycine
15-01.0	h	amidinotransferase)
15q21.2	Arpp19	cAMP-regulated phosphoprotein 19
15q21.3 15q21.3	Tcf12 Aldh1a2	transcription factor 12 aldehyde dehydrogenase family 1, subfamily A2
15q21-q22	Anxa2	annexin A2
15q21-q22	Rora	RAR-related orphan receptor alpha
15g22.2	Ca12	carbonic anyhydrase 12
15q22.3-q23	Anp32a	acidic (leucine-rich) nuclear phosphoprotein 32
		family, member A
15q23	Calml4	calmodulin-like 4
15q24.1	Rpp25	ribonuclease P 25 subunit (human)
15q25.3	Akap13	A kinase (PRKA) anchor protein 13
16p13 -		
16q12.2		
Lewis et al;2003	-	
16p11.2	Doc2a	double C2, alpha
16p11.2	Fus	fusion, derived from t(12:16) malignant
16p12.1	Hs3st2	liposarcoma (human)
10p 12. 1	TISJSIZ	heparan sulfate (glucosamine) 3-O- sulfotransferase 2
16p12.1	Ndufab1	NADH dehydrogenase (ubiquinone) 1, alpha/beta
Top 12.1	11001001	subcomplex, 1
16g12.1	Cbin1	cerebellin 1 precursor protein
16q12-q13	Adcy7	Adenylate cyclase 7
17a21.33 -		
17q24.3		
Lewis et al;2003		
17q21	Gfap	glial fibrillary acidic protein
17q21.2	Cnp	2',3'-cyclic-nucleotide 3'-phosphodiesterase (EC
17.01.0	0	3.1.4.37) (CNP) (CNPase).
17q21.2	Ramp2	receptor (calcitonin) activity modifying protein 2
17q12-q21	Mpp3	membrane protein, palmitoylated 3 (MAGUK p55 subfamily member 3)
17q23.2	Sept4	subfamily member 3) septin 4
18q22.1 -	<u>Septe</u>	and the second s
18qter		
Lewis et al;2003		
18q22.1	Cdh7	Cadherin 7, type 2
18q22.3	Neto1	neuropilin (NRP) and tolloid (TLL)-like 1
18q23	Mbp	myelin basic protein
20p12.3 -		
20p11		
Lewis et al;2003		
20p11	Firt3	fibronectin leucine rich transmembrane protein 3
20p12	Thbd	thrombomodulin
22pter -		
22q12.3		
Lewis et al;2003	T 0	
	Tuba8 Adora2a	tubulin, alpha 8 adenosine A2a receptor

(Continued)

2q15-

	Bi	polar Disorder	12
Loci	Symbol	Description	Se
1p32.1 - 1q32 Segurado2003			
1p22.3 1p31.1 1p31.3	Ddah1 Lhx8 Cipp	dimethylarginine dimethylaminohydrolase 1 LIM homeobox protein 8 channel-interacting PDZ domain protein	14
1p31.3 1q31.3 1q32	Ak311 Lhx9 Tnnt2	adenylate kinase 3 alpha-like 1 LIM homeobox protein 9 troponin T2, cardiac	Se
1q32.1 1q32.1 1q32.1	Csrp1 Syt2 Fmod	cysteine and glycine-rich protein 1 synaptotagmin 2 fibromodulin	17
1q32.1 1q32.1	Nfasc Syt2	Neurofascin synaptotagmin 2	17 Se
2q22.1 - 2q23.3 Segurado2003			
2q22.3 2q23.3	Zfhx1b Trifaip6	zinc finger homeobox 1b tumor necrosis factor alpha induced protein 6	
3q22.1 - 3q25.31 Segurado2003			
3q22.3 3q24 3q25.1	Sox14 Zic1 Rnf13	SRY-box containing gene 14 Zinc finger protein of the cerebellum 1 ring finger protein 13	
3q25.31	Kcnab1	potassium voltage-gated channel, shaker-related subfamily, beta member 1	
5pter - 5p15.1 Segurado2003			
5p15.3	Nkd2	naked cuticle 2 homolog (Drosophila)	
8pter - 8qter Segurado2003 8q24.3	bidged :	Name downstram conclusion area 1	18 18
8q24.3	Ndrg1 Scrt1	N-myc downstream regulated gene 1 scratch homolog 1, zinc finger protein (Drosophila)	Se 18
9p22.3 - 9qter Segurado2003	0.107		
9p13 9q21.13	Ccl27 Aldh1a1	chemokine (C-C motif) ligand 27 aldehyde dehydrogenase family 1, subfamily A1	19 19
9q21.13 10q11.21 - 10q22.1	Gda	Guanine deaminase	Se 19
Segurado2003		DL 070 11 10 10	
10p11.22 10q11.1	Arhgap12 Cxcl12	Rho GTPase activating protein 12 chemokine (C-X-C motif) ligand 12	20 20
10q11.21 10q11.21	Asah2 Rassf4	N-acylsphingosine amidohydrolase 2 Ras association (RalGDS/AF-6) domain family 4	Se
10q11.21 10q21.2	Rasgef1a Arid5b	RasGEF domain family, member 1A AT rich interactive domain 5B (Mr11 like)	21
11p13 - 11q13.3 Segurado2003			21 Se
11p12-p11.2	Mapk8ip1	mitogen activated protein kinase 8 interacting protein 1	
11q11	SIc22a8	solute carrier family 22(organic anion transporter),member 8	<u>100</u>
11q12.2 11q12.3	Fads2 Slc22a6	fatty acid desaturase 2 solute carrier family 22(organic anion transporter),member 6	
11q13.1 11q13.1	Rasgrp2 Malat1	RAS, guaryl releasing protein 2 metastasis associated lung adenocarcinoma transcript 1 (non-coding RNA	

12q23.2 Segurado2003		
12021.31	Nts	neurotensin
12g21.33	Dcn	decorin
12q22	Socs2	suppressor of cytokine signaling 2
14q13.1 -		
14q32.12		
Segurado2003		
14g22.1	Pyal	liver glycogen phosphorylase
14q23.3	Max	Max protein
14q24.3	Fos	FBJ osteosarcoma oncogene
17p12 -		
17q21.33		
Segurado2003		
17p11.2	Rasd1	RAS, dexamethasone-induced 1
17p11.2	Specc1	spectrin domain with coiled-coils 1
17015 1	Wsb1	WD repeat and SOCS how containing 1
17q11.1		WD repeat and SOCS box-containing 1
17q11.2	Evi2a Cdl/5r1	ecotropic viral integration site 2a
17q11.2	Cdk5r1	cyclin-dependent kinase 5, regulatory subunit (p35) 1
17g11.2	Ksr	(p35) 1 kinase suppressor of ras
	Vtn	vitronectin
17q11.2 17q12	Ap2b1	
		Adaptor-related protein complex 2, beta 1 subunit
17q12	Dusp14	dual specificity phosphatase 14
17q21.2	Cnp	2',3'-cyclic-nucleotide 3'-phosphodiesterase (EC 3.1.4.37) (CNP) (CNPase).
17g21.2	Ramp2	receptor (calcitonin) activity modifying protein 2
17q12-q21	Mpp3	membrane protein, palmitoylated 3 (MAGUK p55
11418-481	111111	subfamily member 3)
17g21	Cnp	cyclic nucleotide phosphodiesterase 1
18pter -		
18g12.3		
Segurado2003		
18g11.2-g12.1	Agp4	aguaporin 4
18g12.1	Ttr	transthyretin
18012.2	Zfp191	Zinc finger protein 191
18q21.1	Myo5b	myosin Vb
19g13.33 -		
19gter		
Segurado2003		
19g13.2-g13.3	Npas1	neuronal PAS domain protein 1
19q13.33	Dkkl1	dickkopf-like 1
19g13.42	Tnnt1	troponin T1, skeletal, slow
20pter -		
20p12.3		
Segurado2003		
20p13	Cds2	CDP-diacylglycerol synthase (phosphatidate
Lopio	or to one	cytidylyltransferase) 2
21g21.3 -		
21gter		
Segurado2003		
21g22.11	Kcne2	potassium voltage-gated channel, lsk-related
	1.01162	
	Click	
21q22.12	Col6a1	subfamily, gene 2 chloride intracellular channel 6
	Clic6 Col6a1 Rik/SH3bgr	subtamily, gene 2 chloride intracellular channel 6 RIKEN cDNA 5430437A18 gene

Genes from our complete dataset mapping to linkage loci identified in recent meta-analyses of schizophrenia [Lewis et al., 2003] and bipolar disorder [Segurado et al., 2003]. *average ranks with significant P_{AvgRnk} values <0.01 strongest linkages in the meta-analyses. The rest of the linkages loci have P_{AvgRnk} values <0.05. All genes listed were within at least 10 cM of the marker for the given chromosomal location.

Affymetrix GeneChip oligonucleotide microarrays. It is possible that some of the gene expression changes detected from a single biological experiment, with a one-time assay with this technology, are biological or technical artifacts. With that in mind, we have designed our experiments to minimize the likelihood of having false positives, even at the expense of having false negatives. Working with an isogenic mouse strain affords us an ideal control baseline of saline injected animals for our drug-injected animals. We performed three independent de novo biological experiments, at different times, with different batches of mice (Fig. 1b). We have pooled material from three mice in each experiment, and carried out microarray studies. The pooling process introduces a built in averaging of signal. We used a Venn diagram approach and only considered the genes that were reproducibly changed in the same direction in at least two out of three independent experiments. This overall design is geared to factor out both biological and technical variability. It is to be noted that the concordance between reproducible microarray experiments using the latest generations of oligonucleotide microarrays and other methodologies such as quantitative PCR, with their own attendant technical limitations, is estimated to be over 90% [Quackenbush, 2003]. Moreover, our approach, as described above, is predicated on the existence of three internal crossvalidators for each gene that is called reproducibly changed: (1) is it changed by the other drug also, (2) is the change prevented by co-treatment with both drugs, and (3) is it changed in multiple brain regions, all of which are independent microarray experiments.

While we reproduced a majority of previous findings, we did not see in the mouse work described in this report some of the changes that had previously reported in rats by others using

TABLE VI.	Top Candidate	Genes and	Human	Postmortem 1	Data
-----------	---------------	-----------	-------	--------------	------

Genes from our dataset (Categories I-II) with human postmortem brain changes	Brain region, Category, Drug treatment
SCHIZOPHRENIA	
Adora2a - adenosine A2a receptor	NAC II, PFC II, AMY III-PCP
Aldh1a1 - aldehyde dehydrogenase family 1, subfamily A1	AMY I, NAC II
Apod - apolipoprotein D	AMY II, HIP III- CLZ, PFC III-CLZ, VT III-PCP
Arhgef9- Cdc42 guanine nucleotide exchange factor (GEF) 9	NAC I, PFC I, AMY III- CLZ
Calb1- calbindin 1	VT II, VT III-CLZ
Calb2- calbindin 2	CP II, PFC IV-CLZ
Cckbr- cholecystokinin B receptor	HIP I, NAC III-PCP, VT III-CLZ, CP IV- PCP
Cplx2 - complexin 2	
Cnp- 2',3'-cyclic nucleotide 3' phosphodiesterase	AMY I, CP I, NAC III-PCP, PFC III-PCP, PFC IV- PCP, VT III-CLZ
Dix1- distal-less homeo box 1	VT II, PFC III-CLZ, AMY IV- PCP
Drd1- dopamine receptor D1	PFC II, AMY III-PCP
Drd2 - dopamine receptor D2	PFC II, AMY III- PCP
Faim2 - Fas apoptotic inhibitory molecule 2	HIP I, VT I, PFC III- PCP
Fos- v-los	HIP I, AMY III-CLZ, NAC III-CLZ
Gabra1 - gamma-aminobutyric acid (GABA-A) receptor, subunit alpha <a>	AMY I, AMY III-CLZ, CP III-PCP, NAC III-PCP, VT III- CLZ, VT IV-CLZ
Gabbr1- gamma-aminobutyric acid (GABA-B) receptor, 1	AMY I, PFC I, AMY III- CLZ, NAC III-PCP, VT III- CLZ, VT IV-CLZ
Gad2 - glutamic acid decarboxylase 2 4	AMY I, NAC III-PCP, VT IV-CLZ
Gfap - glial fibrillary acidic protein	AMY I, NAC III-CLZ, PFC IV-CLZ
Gria1- glutamate receptor, ionotropic, AMPA1 (alpha 1)	AMY II
Gria2 - glutamate receptor, ionotropic, AMPA 2	VT I, VT III-PCP
Gria4- glutamate receptor, ionotrophic, AMPA 4	AMYI
Grin1 (Nmda-1) - glutamate receptor, ionotropic, N-methyl D-aspartate 1	VT II, NAC III-CLZ
Kcnj4/Kir2.3-potassium inwardly-rectifying channel, subfamily J, member 4	NAC I, PFC III-PCP
Lphn1 - latrophilin 1	PFC I, VT II, CP III-PCP
LpI-Lipoprotein Lipase	NAC I, HIP I, AMY III-CLZ
Mal-myelin and lymphocyte protein, T-cell differentiation protein	PFC I, AMY II, VT III-PCP, NAC IV-PCP
Mag - myelin associated glycoprotein	AMY II, PFC III-PCP, VT III-PCP, NAC IV-CLZ
Maob-monoamine oxidase B	VTI
Mbp - myelin basic protein 🖷	AMY I, PFC III-PCP
	AMY II, NAC III-CLZ, PFC III-PCP, NAC IV-PCP, VT
Mobp- myelin-associated oligodendrocytic basic protein	IV- CLZ
Mpp3- membrane protein, palmitoylated 3 (MAGUK p55 subfamily member 3)	HIP I, VT I, AMY III-CLZ, NAC III-CLZ
Neurod1- neurogenic differentiation 1	AMY II, AMY III-PCP, NAC III-PCP, PFC III-PCP, VT III-CLZ
 Npas1- neuronal PAS domain protein 1 	VTI
Plp1 - proteolipid protein (myelin)	AMY I, PFC III-PCP, VT IV-CLZ
Pmp22- peripheral myelin protein	AMY
Pvalb- parvalbumin 📱	AMY II
Rarb - retinoic acid receptor, beta	PFC II, AMY III-PCP
Rein - reelin 🧧	VT II, PFC III-CLZ
Rgs4 - regulator of G-protein signalling 4	AMY II, VT II, HIP III-CLZ, PFC III-CLZ, AMY IV-CLZ, HIP IV-CLZ, VT IV-CLZ
Rtn4/Nogo - neurite growth inhibitor reticulon 4	AMY II, PFC III-PCP
Ryr2 -ryanodine receptor 2	VTI
Sema3a- semaphorin 3A	
Shox2- short stature homeobox 2 SIc17a6/DnpI-solute carrier family 17 (sodium-dependent inorganic phosphate cotransporter), member 6	VT II, VT III-CLZ, VT III-PCP AMY 1, NAC Cat II
Syn2- synapsin II	AMY I, VT I, AMY III-PCP, CP III-PCP
Tac1 - Tachykinin 1 (substance K, substance P, neurokinin 1, neurokinin 2, neuromedin L, neurokinin alpha, neuropeptide K, neuropeptide gamma)	VT I, PFC II, AMY III-PCP
Trf - transferrin	AMY II, PFC III-PCP, VT III-PCP
Trhr- thyrotropin releasing hormone receptor	AMY II, VT IV-CLZ
Ywhab-tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, beta	AMY I, HIP IV-CLZ, NAC III-PCP, PFC III-CLZ, VT IV-
polypeptide/14-3-3 genes	CLZ
IPOLAR DISORDER	2802
Aldh1a1 - aldehyde dehydrogenase family 1, subfamily A1	AMY I, NAC II, HIP III-CLZ, PFC III-CLZ, VT III-PCP
Apod - apolipoprotein D	AMY II, HIP III- CLZ, PFC III-CLZ, VT III-PCP
Calb1- calbindin 1	VT II, VT III-CLZ
Calb2- calbindin 2	CP II, PFC IV-CLZ
Camk2a - Calcium/Calmodulin-dependent protein kinase II-alpha	AMY I, PFC I, VT II, CP III-CLZ, NAC III-CLZ, PFC III-
	PCP, AMY IV-PCP
Dix1- distal-less homeo box 1	VT II, PFC III-CLZ, AMY IV- PCP
Gabbr1- gamma-aminobutyric acid (GABA-B) receptor, 1 Gabra1 - gamma-aminobutyric acid (GABA-A) receptor, subunit alpha	PFC I, AMY III- CLZ, NAC III-PCP, VT III-CLZ AMY I, AMY III-CLZ, CP III-PCP, NAC III-PCP, VT III-
	CLZ, VT IV-CLZ,
Gad2 - glutamic acid decarboxylase 2	AMY I, NAC III-PCP, VT IV-CLZ
Gfap - glial fibrillary acidic protein	AMY I, NAC III-CLZ, PFC IV-CLZ
Mbp - myelin basic protein	AMY I, PFC III-PCP
Plp1 - proteolipid protein (myelin)	AMY I, PFC III-PCP, VT IV-CLZ
Pmp22- peripheral myelin protein	AMYI
Pvalb- parvalbumin	AMYII
Shox2- short stature homeobox 2	PFC II, AMY III-PCP
Syn2- synapsin II 🖷	AMY I, VT I, CP III-PCP

 Tac1 - Tachykinin 1 (substance K, substance P, neurokinin 1, neurokinin 2, neuromedin L, neurokinin alpha, neuropeptide K, neuropeptide gamma) 	VT I, PFC II, AMY III-PCP		
DEPRESSION			
Cnp- 2'.3'-cyclic nucleotide 3' phosphodiesterase	AMY I, CP I, NAC III-PCP, PFC III-PCP, VT III-CL		
cut tio of the interesting of histophican second	PFC IV-PCP		
- Mag - myelin associated glycoprotein 🔎	AMY II, PFC III-PCP, VT III-PCP, NAC IV-CLZ		
 Mal- myelin and lymphocyte protein, T-cell differentiation protein 	PFC I, AMY II, VT III-PCP, NAC IV-PCP		
 Mobp- myelin-associated oligodendrocytic basic protein 	AMY II, NAC III-CLZ, PFC III-PCP, NAC IV-PCP, V		
	IV- CLZ		
- Plp1 - proteolipid protein (myelin) 💻	AMY I, PFC III-PCP, VT IV-CLZ		
- Pmp22- peripheral myelin protein	AMY I		
- Pvalb- parvalbumin 📱	AMY		
ALCOHOLISM			
- Agt - angiotensinogen	CP II, NAC II, AMY III-PCP		
- Apod - apolipoprotein D	AMY II, HIP III-CLZ, PFC III-CLZ, VT III-PCP		
- Cnp- 2',3'-cyclic nucleotide 3' phosphodiesterase	AMY I, CP I, NAC III-PCP, PFC III-PCP, VT III-CLZ		
Chip 2,5 Cyclic Inductions 5 priosphoulestering	PFC IV-PCP		
- Cryab- crystallin, alpha B	AMY II, AMY III-PCP, CP-III-CLZ, VT III-CLZ		
- Fn1- fibronectin 1	VT II		
- Gfap - glial fibrillary acidic protein	AMY I, NAC III-CLZ, PFC IV-CLZ		
- Mal- myelin and lymphocyte protein. T-cell differentiation protein	PFC I, AMY II, VT III-PCP, NAC IV-PCP		
- Mbp - myelin basic protein =	AMY I, PFC III-PCP		
- Mobp- myelin-associated oligodendrocytic basic protein	AMY II, NAC III-CLZ, PFC III-PCP, NAC IV-PCP, V		
 Modp- myelin-associated oligodenorocytic basic protein 	IV- CLZ		
- Pip1 - proteolipid protein (myelin) 🔎	AMY I, PFC III-PCP, VT IV-CLZ		
- Syn2- synapsin II	AMY I, VT I, AMY III-PCP, CP III-PCP		
	AMIT I, VT I, AMIT INFOR, OF INFOR		
- Apod - apolipoprotein D	AMY II, HIP III-CLZ, PFC III-CLZ, VT III-PCP		
- Apod - apolipoprotein D =	VT II. VT III-CLZ		
- Calb2- calbindin 2	CP II, PFC IV-CLZ		
 Cdk5r1- cyclin-dependent kinase 5, regulatory subunit (p35) 1 	AMY I, CP III-CLZ, NAC III-PCP, PFC III-PCP, VT I		
	CLZ		
 Cnp- 2',3'-cyclic nucleotide 3' phosphodiesterase 	AMY I, CP I, NAC III-PCP, PFC III-PCP, VT III-CLZ PFC IV-PCP		
Cabled somme emission while acid (CADA D) researcher 1	PFC I. AMY III- CLZ, NAC III-PCP, VT III-CLZ		
- Gabbr1- gamma-aminobutyric acid (GABA-B) receptor, 1	PFC I, AMY III-CE2, NAC III-PCP, VT III-CE2 PFC I, AMY II, VT III-PCP, NAC IV-PCP		
 Mal- myelin and lymphocyte protein, T-cell differentiation protein 			
- Mbp - myelin basic protein 🖷	AMY I, AMY II, PFC III-PCP		
- Pvalb- parvalbumin 🔎	AMY II		
 Rgs4 - regulator of G-protein signalling 4 	AMY II, VT II, HIP III-CLZ, PFC III-CLZ, AMY IV-CL		
	HIP IV-CLZ, VT IV-CLZ		
- Sema3a- semaphorin 3A	HIP		
 Tac1 - Tachykinin 1 (substance K, substance P, neurokinin 1, neurokinin 2, neuromedin L, 	VT I, PFC II, AMY III-PCP		
neurokinin alpha, neuropeptide K, neuropeptide gamma)			
- Trhr- thyrotropin releasing hormone receptor	AMY II, VT IV-CLZ		
EPILEPSY			
- Csen- calsenilin 📱	HIP I, HIP III-PCP, VT III-CLZ, CP IV-CLZ		
- Gabbr1- gamma-aminobutyric acid (GABA-B) receptor, 1 🔎	PFC I, AMY III- CLZ, NAC III-PCP, VT III-CLZ		
 Rtn4/NoGo - neurite growth inhibitor reticulon 4 	AMY II, PFC III-PCP		
 Tac1 - Tachykinin 1 (substance K, substance P, neurokinin 1, neurokinin 2, neuromedin L, 	VT I, PFC II, AMY III-PCP		
neurokinin alpha, neuropeptide K, neuropeptide gamma)			
OTHER DISORDERS			
PARKINSON			
- Pvalb- parvalbumin 🔎	AMY II		
COCAINE ADDICTION			
- Mbp - myelin basic protein 🖷	AMY I, PFC III-PCP		
- Plp1 - proteolipid protein (myelin)	AMY I, PFC III-PCP, VT IV-CLZ		
i i protovojna protoli (m) omi			
Additional Evidence: Linkage			
Additional Evidence Enikage			

Category I and II genes in our dataset for which there are published reports of alterations in mRNA or protein levels in postmortem brains from individuals with schizophrenia, bipolar disorder, or other brain disorders that impact cognition. PCP, phencyclidine; CLZ, clozapine; PFC, prefrontal cortex; AMY, amygdala; CP, caudate putamen; NAC, nucleus accumbens; VT, ventral tegmentum; HIP, Hippocampus. Roman numerals in the brain region data column represent the Category of the gene.

PCP only, or clozapine only, treatment paradigms [Kaiser et al., 2004; Ouchi et al., 2005]. While some of this may be technical, that is, whole brain versus microdissected brain regions, cDNA microarrays or older generation oligonucleotide microarrays that did not have probe sets for some of our top findings in the current report, there are genes that are present in both the rat and mouse microarrays used. While clearly technical (experimental methodology, drug doses, pharmacokinetics) and biological (inter-strain, inter-species) differences remain open questions deserving of future extensive comparative work, it is likely that in similar paradigms across different species, it is pathways and mechanisms rather than individual genes that are more conserved. That would in turn imply that a convergent functional genomics approach such as ours, where one cross-matches animal gene expression changes with human linkage data at an individual gene level, productive as it may be, could miss many things. An arguably better approach, awaiting more complete datasets as well as more sophisticated bioinformatics tools now emerging, would be to do such a cross matching at a pathway and mechanism level.

Intergenic regions of DNA that are not transcribed, have indirect regulatory roles and give strong linkage and association data would not have a direct cross-matching with gene expression datasets, and would thus not be directly identified, validated and prioritized by our Convergent Functional Genomics approach. However the downstream effector genes whose expression is regulated by these regions would likely be captured by an approach such as ours.

Gene Symbol -Description	Brain Region/	Drugs	
	Category		
ALDH1A1	AMY Cat	Disulfiram	
aldehyde dehydrogenase 1 family, member A1	NAC Cat II		
GABBR1 gamma-aminobutyric acid (GABA) B receptor, 1	PFC Cat I AMY III-CLZ	Baclofen	
gamma-ammobulync acid (GABA) Breceptor, T	NAC III-PCP	Bacibien	
GABRA1	AMY Cat	amobarbital, atropine/hyoscyamine/phenobarbital/scopolamine,	
gamma-aminobutyric acid (GABA) A receptor, alpha 1	VT IV-CLZ CP III-PCP	butabarbital, chlordiazepoxide, clonazepam, clorazepate, desflurane, diazepam, enflurane	
GAD2	AMY Cat		
glutamate decarboxylase 2 (pancreatic islets and	NAC III-PCP	valproic acid	
brain, 65kDa)	VT IV-CLZ		
	HIP Cat I	gemfibrozil, lovastatin/niacin, nicotinic acid, topiramate	
lipoprotein lipase	NAC Cat I AMY III-CLZ		
MAOB	VT Cat I	isocarboxazid, phenelzine, selegiline, tranylcypromine	
monoamine oxidase B			
<u>SLC1A6</u> solute carrier family 1 (high affinity	VT Cat I	Diburata	
aspartate/glutamate transporter), member 6	VICall	Riluzole	
TUBA8	HIP Cat 1	colchicine, docetaxel, podophyllotoxin, taxol, vinblastine,	
tubulin, alpha 8		vincristine, vinorelbine ditartrate	
ADORA2A	NAC Cat II	enionelulling cofficien finitet descelulling	
adenosine A2a receptor	PFC Cat II AMY III-PCP	aminophylline, caffeine, fioricet, theophylline	
		apomorphine, aripiprazole, bromocriptine, buspirone,	
DRD2 dopamine receptor D2	PFC Cat II AMY III-PCP	cabergoline, chloropromazine, clozapine, dihydroergotamine, dopamine, droperidol, olanzapine, fluphenazine,	
F5			
coagulation factor V (proaccelerin, labile factor)	AMY Cat II	drotrecogin alfa	
GABRA3	PFC Cat II AMY III-CLZ	amitriptyline/chlordiazepoxide, amobarbital, butabarbital, chlordiazepoxide, clonazepam, clorazepate, desflurane,	
gamma-aminobutyric acid (GABA) A receptor, alpha 3	CP III-CLZ	diazepam, enflurane,	
g=	NAC III-CLZ		
		acetaminophen/butalbital,	
GABRA5	VT Cat II	acetaminophen/butalbital/caffeine/codeine, amitriptyline/chlordiazepoxide, amobarbital,	
gamma-aminobutyric acid (GABA) A receptor, alpha 5	HIP III-PCP	atropine/hyoscyamine/phenobarbital/scopolamine, butabarbital,	
		chlordiazepoxide, clonazepam, clorazepate, desflurane,	
KCNE2		diazepam, enflurane, est	
KUNE2 potassium voltage-gated channel, lsk-related family,	AMY Cat II	amiodarone, Nicorandil	
member 2		·	
NR3C2		epoxymexrenone, fludrocortisone acetate,	
nuclear receptor subfamily 3, group C, member 2	HIP Cat II	hydrochlorothiazide/spironolactone, Spironolactone	
<u>RARB</u> retinoic acid receptor, beta	PFC Cat II AMY III-PCP	13-cis-Retinoic acid, 9-cis-retinoic acid, acitretin, adapalene, retinoic acid, tazarotene	
RXRG	PFC Cat II	9-cis-retinoic acid, retinoic acid	
retinoid X receptor, gamma		9-cis-retinoic acia, retinoic acia	
0,00412			

TABLE VII. Top Candidate Genes in our Datasets Encoding Targets of Existing Pharmacological Agents

Ingenuity Pathway Analysis (Ingenuity) was used to identify genes in our datasets that are targets of existing pharmacological agents. PCP, phencyclidine; CLZ, clozapine; PFC, prefrontal cortex; AMY, amygdala; CP, caudate putamen; NAC, nucleus accumbens; VT, ventral tegmentum; HIP, hippocampus. Roman numerals in the brain region data column represent the Category of the gene.

VT CAT II

Lastly, it is notable that we do not identify with our approach some of the genes implicated by recent work in the field-NRG1 [Thomson et al., 2006], DNTBP1 [Donohoe et al., 2006], and DAOA [Goldberg et al., 2006]. However, levels of NRG1, for example, do not reportedly differ between schizophrenics and controls, and a related signaling abnormality has been proposed [Hahn et al., 2006]. Thus, our approach may miss genes where the regulation of expression level is not the primary driving force for their implication in disease pathophysiology.

SLC6A13 solute carrier family 6 (neurotransmitter transporter,

GÁBA), member 13

CONCLUSIONS AND FUTURE DIRECTIONS

The results presented in this paper have a series of direct implications. First, our work identifies, cross-validates and prioritizes for future research (candidate gene association studies-including epistatic interactions, neurobiological studies in transgenic mice, and new drug development) a series of known as well as novel candidate genes, pathways and mechanisms for schizophrenia. Figure 3, in particular, summarizes our prioritizing of candidate genes for future follow-up work, and Table V informs prioritization of genes in loci identified by large-scale meta-analysis work [Lewis et al., 2003].

Tiagabine

Second, in terms of pharmacotherapy and drug development, some of the candidate genes in our dataset encode for proteins that are modulated by existing pharmacological agents (Table VII), which may suggest future avenues for rational polypharmacy using currently available agents.

TABLE VIII. Top Candidate Genes Overlap Between Our CFG Schizophrenia Dataset and Our CFG Bipolar Dataset [Ogden et al., 2004]

Gene Symbol	Schizophrenia	Bipolar CFG	Chromosomal location Human linkage/
Description	CFG	(Ogden et al.2004)	association
	AMY Cat I		
MEF2C	HIP Cat I	PFC Cat I	5q14.3
myocyte enhancer factor 2C	VT III-CLZ CP III-PCP	AMY III-VPA	Etoh ^(Hill et al 2004)
, ,	NAC III-PCP		
	AMY Cat I	·	
CDK5R1	CP III-CLZ	AMY Cat II	17q11.2
cyclin-dependent kinase 5, regulatory	NAC III-PCP	CP III-VPA	Mental Retardation (Venturin et al 2006)
subunit (p35) 1	PFC III-PCP		Etoh (Hill et al 2004)
	VT III-CLZ		1p21.2
	AMY Cat II		SZ (Brzustowicz et al 2000) (Faraone et al 2006a)
<u>GPR88</u>	PFC Cat II	PFC Cat I	(Numberger et al 2001)
G-protein coupled receptor 88	VT III-CLZ	FIC Call	Er (Foroud et al 2000), (Numberger et al 2001), (Lappalainen et al 2004), (Reich et al
			1998).(Schuckit et al 2001)
			7a21 3
TAC1	VT Cat I PFC Cat II	PFC Cat	7q21.3 SZ (Ekelund et al 2000),(Yan et al 2000)
tachykinin 1	AMY III-PCP		BP (McInnis et al 2003).(Ogden et al 2004)
COPG2AS2	HIP Cat I		
coatomer protein complex, subunit gamma	PFC III-CLZ	PFC III-Meth	7q32
2, antisense 2	VT III-PCP		, dom
FREQ	AMY Cat I		9o34 11
frequenin homolog (Drosophila)	VT IV-CLZ	AMY III-VPA	9q34.11 SZ ^(Kamnasaran et al 2003)
NPY2R	HIP Cat I		
neuropeptide Y receptor Y2	NAC IV-PCP	NAC III-Meth	4q32.1
	HIP Cat I		0~24.2
PTGDS	VT Cat II	AMY III. Moth	9q34.3 SZ ^(Kaufmann et al 1998)
prostaglandin D2 synthase (brain)	AMY III-PCP CP	AMY III-Meth	BP (McInnis et al 2003)
	III-PCP		DF
RFX3			0.010
Regulatory factor X, 3 (influences HLA class II expression)	AMY Cat I	PFC III-VPA	9p24.2
class il expression)			2~26.2
CLDN11	AMY Cat II	CP Cat II	3q26.2 BP ^(Cichon et al 2001)
claudin 11	AMITGALI	CF Cath	Epilepsy (Sander et al 2000)
	AMY Cat I		2-22.0
MOBP	NAC Cat II	CP Cat II	3p22.2 SZ, BP, Autism (Kleiderfein et al 1998),(Lewis et al 2003)
myelin-associated oligodendrocytic basic	PFC III-PCP	VT IV-VPA	SZ, BP, AUTISM SZ (Macgregor et al 2004),(Combi et al 2005)
protein	VT IV-CLZ		52 (
	VT Cat II		
<u>NPTX1</u>	CP III-PCP	CP Cat II	17q25.3 BP ^(Dick et al 2003)
neuronal pentraxin 1	HIP III-PCP NAC III-PCP		BP (block et al 2005) Etoh (Hill et al 2004)
	111-PUP		Eton Vinice at 2004)
PPP1R1B/DARPP-32	AMY III-PCP,	DEC Cat I	17-10
protein phosphatase 1, regulatory (inhibitor) subunit 1B	PFC IV-PCP	PFC Cat I	17q12
ANXA2			15q22.2
AINAA2 annexin A2	VT Cat	CP IV-Meth	SZ ^(Paunio et al 2004)
	HIP Cat I		
<u>FUT9</u>	CP III-PCP	CP IV-Meth	6q16 SZ ^(Cao et al 1997)
fucosyltransferase 9	VT III-CLZ		BP ^(Dick et al 2003)
0515	AMY Cat I		17a21.31
GFAP	NAC III-CLZ	CP IV-Meth	17q21.31 SZ ^(Lewis et al 2003)
glial fibrillary acidic protein	PFC IV-CLZ	NAC IV-Meth	Autism ^(Cantor et al 2005)
	NAC cat I	AMY IV-VPA CP IV-	
<u>GNB1</u>	AMY Cat II	VPA	1p36.33 (Vincent et al 2000)
guanine nucleotide binding protein, beta 1	PFC III-PCP VT IV-CLZ		Neuroblastoma (Vincent et al 2000)
HNRPDL	VIIV-OLZ		4q13-q21
heterogeneous nuclear ribonucleoprotein	VT Cat I	CP IV-Meth	SZ (Paunio et al 2004)
D-like			SZ (Paunio et al 2004) Etoh ^{(Reich} et al 1998),(Wyszyński et al 2003)
			6p25.1 SZ (Lewis et al 2003),(Maziade et al 1997)
NRN1			(Lewis et al 2003) (Maziade et al 1997)
neuritin 1	NAC cat I	CP IV-VPA	Etoh ^(Hill et al 2004)

(Continued)

TABLE VIII. (Continued)

PMP22 peripheral myelin protein	AMY Cat I	CP IV-Meth	17p12 SZ, BP ^(Park et al 2004) BP ^(Liu et al 2003)
RPS27 ribosomal protein S27 Rps27	HIP Cat I	AMY IV-VPA	1q21.3 SZ ^(Brzustowicz et al 2000)
SATB1 special AT-rich sequence binding protein 1	HIP Cat I	CP IV-VPA	3p24.3 SZ ^(Lewis et al 2003)
SGK serum/glucocorticoid regulated kinase	NAC Cat I AMY Cat II VT Cat II CP III-PCP HIP Cat III-PCP PFC IV-PCP	VT IV-VPA	6q23.2 SZ (Levi et al 2005) BP ^(Venken et al 2005)
SRY-box containing gene 11	Amy Cat I	NAC IV-Meth	2p25.2 SZ ^(Brzustowicz et al 2000)
<u>TTR</u> transthyretin	AMY Cat I CP Cat II NAC Cat II VT Cat II	CP IV-Meth	18q21.1 SZ ^(Goodman 1998, Maziade et al 2005)
ZIC1 Zinc finger protein of the cerebellum 1 (Zic1), mRNA	NAC Cat I AMY Cat II CP Cat II HIP Cat II PFC III-CLZ	VT IV-VPA	3q24 SZ (Bulayeva et al 2005) BP,SZA ^(Badenhop et al 2002)
AQP4 aquaporin 4	AMY Cat I	AMY IV-VPA CP IV-Meth PFC IV-Meth	18q11.2 BP ^(Detera-Waaleigh et al 1999) Etoh ^(Hill et al 2004)
ATP1B2 ATPase, Na+/K+ transporting, beta 2	NAC cat I	CP IV-VPA	17p13.1
SEPT8 septin 8	AMY Cat II	CP III VPA	5q23.3 SZ ^{(Streub} et al 1997)
<u>AGT</u> angiotensinogen (serpin peptidase inhibitor, clade A, member 8)	CP Cat II NAC Cat II AMY III-PCP	NAC III-Meth	1042.2 SZ (Ekelund et al 2001), (Paunio et al 2004),(Blackwood et al 2001), (Paunio et al 2004) BP ^{(Macgregor et al} 2004)
<u>GNG7</u> guanine nucleotide binding protein (G protein), gamma 7 subunit	PFC Cat II	PFC III-Meth	19p13.3 SZ, BP ^(Kleiderlein et al 1998)
PLP1 proteolipid protein (myelin) 1	AMY Cat II PFC III-PCP VT IV-CLZ	AMY III-VPA CP IV-VPA,	Xq22.2 SZ ^{(Qin} et al 2005c)
SCN4B sodium channel, type IV, beta	AMY Cat II PFC Cat II VT IV-PCP	PFC III-Meth	11q23.3 SZ ^{(Gurling} et al 2001),(Demirhan and Tastemir 2003), (Golimbet et al 2003) Etoh ^{(Wyszynski et al 2003), (Sun et al 1999)}
SPARC secreted acidic cysteine rich glycoprotein	NAC Cat II AMY III-PCP	NAC III-Meth	SZ, BP, Psychosis ^(Sixlar et al 2004) SZ, BP, Psychosis ^(Sixlar et al 2004) Epilepsy ^(Chou et al 2003) Etoh ^(Dick et al 2002) , (Sun et al 1999)
BTBD3 BTB (POZ) domain containing 3	AMY III-PCP VT III-CLZ CP IV-CLZ	CP Cat II AMY III-VPA PFC IV-VPA	20p12.2
CCK cholecystokinin	AMY III-PCP NAC IV-PCP	CP Cat II NAC IV-Meth	3p22.1
CNOT7 CCR4-NOT transcription complex, subunit	AMY III-PCP	CP Cat II	8p22
GORASP2 golgi reassembly stacking protein 2	VT III-CLZ	AMY Cat II	2q31.1
HRMT1L2 heterogeneous nuclear ribonucleoproteins methyltransferase-like 2	AMY III-CLZ PFC III-PCP VT III-CLZ	NAC Cat II	19q13.33
NCALD neurocalcin delta	AMY III-PCP	CP Cat II AMY IV-VPA	8q22.3
PITPNB phosphatidylinositol transfer protein, beta	AMY III-PCP VT III-CLZ	CP Cat II	22q12.1
PSME1 proteasome (prosome, macropain) 28 subunit, alpha	VT III-CLZ	AMY Cat II	14q11.2
<u>SYT1</u> synaptotagmin l	AMY III-PCP CP III-PCP VT III-CLZ	CP Cat II AMY IV-VPA VT IV-VPA	12q21.2
<u>TBR1</u> T-box brain gene 1	HIP Cat III-PCP NAC III-PCP CP IV-PCP	CP Cat II NAC IV-VPA	2q24.2
CAMKK2 calcium/calmodulin-dependent protein kinase kinase 2, beta	PFC IV-PCP	CP Cat I	12q24.31 BP ^{(Barden} et al 2006)

PCP, phencyclidine; CLZ, clozapine; PFC, prefrontal cortex; AMY, amygdala; CP, caudate putamen; NAC, nucleus accumbens; VT, ventral tegmentum; SZ, schizophrenia; BP, bipolar disorder; MDD, major depressive disorder; AD, Alzheimer; HD, Huntington Disease. Roman numerals in the multiple brain region data column represent the Category of the gene.

Notably, existing drugs approved for other indications, such as disulfiram, baclofen, benzodiazepines, anticonvulsants (divalproex, topiramate), and lipid lowering agents (gemfibrozil, nicotinic acid) are potential augmentation options for existing first-line anti-psychotics and merit careful exploration as such. Moreover, our datasets of the effects of PCP and clozapine on gene expression in different key brain regions (Tables I–III) may be used as a source of new targets for drug development. Individual genes involved in the response to PCP could be of relevance for developing faster acting antipsychotic agents, in addition to agents for the treatment of hallucinogenic drug abuse. Individual genes involved in the response to clozapine may be of relevance for developing next generation antipsychotic agents as well as in pharmacogenetic and pharmacoimaging testing of responders versus non-responders.

Third, our work documents an apparent overlap between candidate genes for schizophrenia and candidate genes for bipolar disorder identified through Convergent Functional Genomics (Tables V and VIII) [Ogden et al., 2004]. This has been a topic of ongoing interest and debate in the field [Berrettini, 2000; Craddock et al., 2006]. A recent study by us has shown significant heterogeneity and overlap of phenotypic aspects of schizophrenia and bipolar disorder [Niculescu et al., 2006]. Moreover, the clinical literature has long abounded in examples of mood symptoms in schizophrenia patients, and the use of antidepressants and anticonvulsant mood stabilizers for symptom improvement in schizophrenia has been explored in both human studies [Kremer et al., 2004] and pre-clinical models [Ong et al., 2005]. It seems possible that nature has recruited more primitive mechanisms related to mood regulation for participation in higher functions such as cognition [Eisenberger et al., 2003]. The utility of regulating mood in relationship to cognition is of speculative evolutionary interest, and of pragmatic clinical importance. Specifically, treating schizophrenia proactively with mood regulating agents, and mood disorders with cognition modulating agents, warrants pursuit at the level of both drug development and clinical trials. Of note, we also see overlap with a recently published Convergent Functional Genomics dataset for alcoholism [Rodd et al., 2006] (data not shown)-see also Table VI, which may point to a more general issue of shared genes between major psychiatric disorders, including substance abuse disorders, perhaps in a Lego-like fashion [Niculescu et al., 2006].

Fourth, the model that emerges out of the Gene Ontology analysis of our data is that of schizophrenia as a disorder of disrupted connectivity: primary brain cellular malfunctioning and altered intercellular communication, of a developmental origin, impacting the brains' ability to integrate organismal physiology, have appropriate external behavior responses, and react appropriately to environmental stimuli (Fig. 5b). The cybernetic-like simplicity of the model should not overshadow the important fact that it is the result of the empirical coalescence of data in a non-hypothesis driven, discovery type approach. The implications for understanding the pathophysiology and treatment of schizophrenia and related disorders are profound. One needs to correct brain cell functioning and communication, body physiology, behavioral output, and reactivity to the environment, in the treatment of these disorders. It is a place where psychopharmacology, management of medical problems, behavioral therapy and social rehabilitation can and should go hand in hand. Moreover, the strong developmental component indicates a critical need for early intervention to prevent difficult to reverse, full-blown brain infrastructure changes and mitigate the course of the illness.

In conclusion, we propose that our comprehensive Convergent Functional Genomics approach is a useful starting point in helping unravel the genetic code and neurobiology of schizophrenia and related disorders, and generates a series of leads for both future research and clinical practice.

ACKNOWLEDGMENTS

We would like to acknowledge our debt of gratitude for the efforts and results of the many groups, cited in our paper, who have conducted human genetic studies and human postmortem brain studies in schizophrenia and related disorders. Without their arduous and careful work, an approach such as ours would not be possible. This work was supported by funds from INGEN (Indiana Genomics Initiative of Indiana University) and INBRAIN (Indiana Biomarker Research Alliance In Neuropsychiatry) to ABN. We would like to thank Sudharani Mamidipalli for excellent help with bioinformatics. ABN would like to thank James B. Lohr for early discussions and mentorship on clinical and research aspects of schizophrenia, as well as Mark Vawter and Francine Benes for discussions on evaluation and interpretation of postmortem brain data. Microarray studies were carried out in the Center for Medical Genomics at Indiana University School of Medicine. The Center for Medical Genomics is funded in part by INGEN. Chunxiao Zhu assisted with the microarray work. MAG holds an equity interest in San Diego Instruments, Inc.

REFERENCES

- Abdolmaleky HM, Cheng KH, Russo A, Smith CL, Faraone SV, Wilcox M, et al. 2005. Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: A preliminary report. Am J Med Genet B 134B:60-66.
- Abe S, et al. 2000. Differential expression of GABA(A) receptor subunit mRNAs and ligand binding sites in rat brain following phencyclidine administration. Synapse 38:51–60.
- Aberg K, et al. 2006a. Human QKI, a new candidate gene for schizophrenia involved in myelination. Am J Med Genet Part B 141B:84–90.
- Aberg K, Saetre P, Jareborg N, Jazin E. 2006b. Human QKI, a potential regulator of mRNA expression of human oligodendrocyte-related genes involved in schizophrenia. Proc Natl Acad Sci USA 103:7482–7487.
- Aleman A, Kahn RS. 2005. Strange feelings: Do amygdala abnormalities dysregulate the emotional brain in schizophrenia? Prog Neurobiol 77:283-298.
- Arinami T. 2005. Genomewide high-density SNP linkage analysis of 236 Japanese families supports the existence of schizophrenia susceptibility Loci on chromosomes 1p, 14q, and 20p. Am J Hum Genet 77:937– 944.
- Aston C, Jiang L, Sokolov BP. 2004. Microarray analysis of postmortem temporal cortex from patients with schizophrenia. J Neurosci Res 77: 858–866.
- Aston C, Jiang L, Sokolov BP. 2005. Transcriptional profiling reveals evidence for signaling and oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder. Mol Psychiatry 10:309–322.
- Badenhop RF, Moses MJ, Scimone A, Mitchell PB, Ewen-White KR, Rosso A, et al. 2002. A genome screen of 13 bipolar affective disorder pedigrees provides evidence for susceptibility loci on chromosome 3 as well as chromosomes 9, 13 and 19. Mol Psychiatry 7:851–859.
- Bandtlow CE, Dlaska M, Pirker S, Czech T, Baumgartner C, Sperk G. 2004. Increased expression of Nogo-A in hippocampal neurons of patients with temporal lobe epilepsy. Eur J Neurosci 20:195–206.
- Bannon MJ, Pruetz B, Manning-Bog AB, Whitty CJ, Michelhaugh SK, Sacchetti P, et al. 2002. Decreased expression of the transcription factor NURR1 in dopamine neurons of cocaine abusers. Proc Natl Acad Sci USA 99:6382–6385.
- Bannon M, Kapatos G, Albertson D. 2005. Gene expression profiling in the brains of human cocaine abusers. Addict Biol 10:119–126.
- Barden N, Harvey M, Gagne B, Shink E, Tremblay M, Raymond C, et al. 2006. Analysis of single nucleotide polymorphisms in genes in the chromosome 12Q24.31 region points to P2RX7 as a susceptibility gene to bipolar affective disorder. Am J Med Genet B 141B:374–382.

- Begni S, Moraschi S, Bignotti S, Fumagalli F, Rillosi L, Perez J, et al. 2003. Association between the G1001C polymorphism in the GRIN1 gene promoter region and schizophrenia. Biol Psychiatry 53:617–619.
- Benes FM, Matzilevich D, Burke RE, Walsh J. 2006. The expression of proapoptosis genes is increased in bipolar disorder, but not in schizophrenia. Mol Psychiatry 11:241–251.
- Bernardo JM, Smith AFM. 1994. Bayesian theory. New York: Wiley.
- Berrettini WH. 2000. Are schizophrenic and bipolar disorders related? A review of family and molecular studies. Biol Psychiatry 48:531–538.
- Bertsch B, et al. 2005. Convergent functional genomics: A Bayesian candidate gene identification approach for complex disorders. Methods 37:274-279.
- Bird ED. 1980. Chemical pathology of Huntington's disease. Annu Rev Pharmacol Toxicol 20:533-551.
- Blackwood DH, et al. 2001. Schizophrenia and affective disorders cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: Clinical and P300 findings in a family. Am J Hum Genet 69:428–433.
- Blouin JL, Dombroski BA, Nath SK, Lasseter VK, Wolyniec PS, Nestadt G, et al. 1998. Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nat Genet 20:70–73.
- Brown ES. 2005. Bipolar disorder and substance abuse. Psychiatr Clin North Am 28:415–425.
- Browning MD, Dudek EM, Rapier JL, Leonard S, Freedman R. 1993. Significant reductions in synapsin but not synaptophysin specific activity in the brains of some schizophrenics. Biol Psychiatry 34:529– 535.
- Brzustowicz LM, Honer WG, Chow EW, Little D, Hogan J, Hodgkinson K, et al. 1999. Linkage of familial schizophrenia to chromosome 13q32. Am J Hum Genet 65:1096–1103.
- Brzustowicz LM, Hodgkinson KA, Chow EW, Honer WG, Bassett AS. 2000. Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21-q22. Science 288:678-682.
- Bulayeva KB, Leal SM, Pavlova TA, Kurbanov RM, Glatt SJ, Bulayev OA, et al. 2005. Mapping genes of complex psychiatric diseases in Daghestan genetic isolates. Am J Med Genet B 132B:76–84.
- Callicott JH, et al. 2005. Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proc Natl Acad Sci USA 102:8627–8632.
- Cantor RM, Kono N, Duvall JA, Alvarez-Retuerto A, Stone JL, Alarcon M, et al. 2005. Replication of autism linkage: Fine-mapping peak at 17q21. Am J Hum Genet 76:1050–1056.
- Cao Q, Martinez M, Zhang J, Sanders AR, Badner JA, Cravchik A, et al. 1997. Suggestive evidence for a schizophrenia susceptibility locus on chromosome 6q and a confirmation in an independent series of pedigrees. Genomics 43:1–8.
- Carlsson A. 2006. The neurochemical circuitry of schizophrenia. Pharmacopsychiatry 39(Suppl 1):10-14.
- Chambers JS, Perrone-Bizzozero NI. 2004. Altered myelination of the hippocampal formation in subjects with schizophrenia and bipolar disorder. Neurochem Res 29:2293-2302.
- Chen CH, Shih HH, Wang-Wuu S, Tai JJ, Wuu KD. 1998. Chromosomal fragile site expression in lymphocytes from patients with schizophrenia. Hum Genet 103:702–706.
- Chen YH, Tsai MT, Shaw CK, Chen CH. 2001. Mutation analysis of the human NR4A2 gene, an essential gene for midbrain dopaminergic neurogenesis, in schizophrenic patients. Am J Med Genet 105:753– 757.
- Chen Q, He G, Qin W, Chen QY, Zhao XZ, Duan SW, et al. 2004a. Familybased association study of synapsin II and schizophrenia. Am J Hum Genet 75:873–877.
- Chen Q, He G, Wang XY, Chen QY, Liu XM, Gu ZZ, et al. 2004b. Positive association between synapsin II and schizophrenia. Biol Psychiatry 56:177-181.
- Cheng R, Juo SH, Loth JE, Nee J, Iossifov I, Blumenthal R, et al. 2006. Genome-wide linkage scan in a large bipolar disorder sample from the National Institute of Mental Health genetics initiative suggests putative loci for bipolar disorder, psychosis, suicide, and panic disorder. Mol Psychiatry 11:252–260.
- Chiu YF, McGrath JA, Thornquist MH, Wolyniec PS, Nestadt G, Swartz KL, et al. 2002. Genetic heterogeneity in schizophrenia II: Conditional analyses of affected schizophrenia sibling pairs provide evidence for an

interaction between markers on chromosome 8p and $14q.\,Mol\,Psychiatry\,7:658-664.$

- Chou IC, Peng CT, Huang CC, Tsai JJ, Tsai FJ, Tsai CH. 2003. Association analysis of gamma 2 subunit of gamma- aminobutyric acid type A receptor polymorphisms with febrile seizures. Pediatr Res 54:26–29.
- Chowdari KV, Mirnics K, Semwal P, Wood J, Lawrence E, Bhatia T, et al. 2002. Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Hum Mol Genet 11:1373-1380.
- Cichon S, Schumacher J, Muller DJ, Hurter M, Windemuth C, Strauch K, et al. 2001. A genome screen for genes predisposing to bipolar affective disorder detects a new susceptibility locus on 8q. Hum Mol Genet 10:2933-2944.
- Combi R, Ferini-Strambi L, Montruccoli A, Bianchi V, Malcovati M, Zucconi M, et al. 2005. Two new putative susceptibility loci for ADNFLE. Brain Res Bull 67:257–263.
- Coon H, Holik J, Hoff M, Reimherr F, Wender P, Myles-Worsley M, et al. 1994. Analysis of chromosome 22 markers in nine schizophrenia pedigrees. Am J Med Genet 54:72-79.
- Costa E, Guidotti A, Veldic M. 2005. Should allosteric positive modulators of GABA(A) receptors be tested in the treatment of schizophrenia? Schizophr Res 73:367–368.
- Craddock N, O'Donovan MC, Owen MJ. 2006. Genes for schizophrenia and bipolar disorder? Implications for psychiatric nosology. Schizophr Bull 32:9–16.
- Dann J, DeLisi LE, Devoto M, Laval S, Nancarrow DJ, Shields G, et al. 1997. A linkage study of schizophrenia to markers within Xp11 near the MAOB gene. Psychiatry Res 70:131–143.
- Dean B, Pavey G, Scarr E, Goeringer K, Copolov DL. 2004. Measurement of dopamine D2-like receptors in postmortem CNS and pituitary: Differential regional changes in schizophrenia. Life Sci 74:3115– 3131.
- DeLisi LE, Shaw SH, Crow TJ, Shields G, Smith AB, Larach VW, et al. 2002. A genome-wide scan for linkage to chromosomal regions in 382 sibling pairs with schizophrenia or schizoaffective disorder. Am J Psychiatry 159:803–812.
- DeMar JC Jr, et al. 2006. One generation of n-3 polyunsaturated fatty acid deprivation increases depression and aggression test scores in rats. J Lipid Res 47:172–180.
- Demirhan O, Tastemir D. 2003. Chromosome aberrations in a schizophrenia population. Schizophr Res 65:1–7.
- Detera-Wadleigh SD, Badner JA, Yoshikawa T, Sanders AR, Goldin LR, Turner G, et al. 1997. Initial genome scan of the NIMH genetics initiative bipolar pedigrees: Chromosomes 4, 7, 9, 18, 19, 20, and 21q. Am J Med Genet 74:254–262.
- Detera-Wadleigh SD, Badner JA, Berrettini WH, Yoshikawa T, Goldin LR, Turner G, et al. 1999. A high-density genome scan detects evidence for a bipolar-disorder susceptibility locus on 13q32 and other potential loci on 1q32 and 18p11.2. Proc Natl Acad Sci USA 96:5604–5609.
- Devlin B, Bacanu SA, Roeder K, Reimherr F, Wender P, Galke B, et al. 2002. Genome-wide multipoint linkage analyses of multiplex schizophrenia pedigrees from the oceanic nation of Palau. Mol Psychiatry 7:689– 694.
- Dick DM, Foroud T, Edenberg HJ, Miller M, Bowman E, Rau NL, et al. 2002a. Apparent replication of suggestive linkage on chromosome 16 in the NIMH genetics initiative bipolar pedigrees. Am J Med Genet 114: 407–412.
- Dick DM, Nurnberger J Jr, Edenberg HJ, Goate A, Crowe R, Rice J, et al. 2002b. Suggestive linkage on chromosome 1 for a quantitative alcohol-related phenotype. Alcohol Clin Exp Res 26:1453–1460.
- Dick DM, Foroud T, Flury L, Bowman ES, Miller MJ, Rau NL, et al. 2003. Genomewide linkage analyses of bipolar disorder: A new sample of 250 pedigrees from the National Institute of Mental Health Genetics Initiative. Am J Hum Genet 73:107–114.
- Domyo T, Kurumaji A, Toru M. 2001. An increase in [3H]SCH23390 binding in the cerebral cortex of postmortem brains of chronic schizophrenics. J Neural Transm 108:1475–1484.
- Donohoe G, et al. 2006. Variance in neurocognitive performance is associated with dysbindin-1 in schizophrenia: A preliminary study. Neuropsychologia [Epub ahead of print].
- Dracheva S, et al. 2006. Myelin-associated mRNA and protein expression deficits in the anterior cingulate cortex and hippocampus in elderly schizophrenia patients. Neurobiol Dis 21:531–540.

- Dracheva S, Elhakem SL, McGurk SR, Davis KL, Haroutunian V. 2004. GAD67 and GAD65 mRNA and protein expression in cerebrocortical regions of elderly patients with schizophrenia. J Neurosci Res 76:581–592.
- Dracheva S, McGurk SR, Haroutunian V. 2005. mRNA expression of AMPA receptors and AMPA receptor binding proteins in the cerebral cortex of elderly schizophrenics. J Neurosci Res 79:868–878.
- Dracheva S, Davis KL, Chin B, Woo DA, Schmeidler J, Haroutunian V. 2006. Myelin-associated mRNA and protein expression deficits in the anterior cingulate cortex and hippocampus in elderly schizophrenia patients. Neurobiol Dis 21:531–540.
- $\begin{array}{l} Dubertret \,C, Gouya \,L, Hanoun \,N, Deybach \,JC, Ades \,J, Hamon \,M, et al. 2004. \\ The 3' region of the DRD2 gene is involved in genetic susceptibility to schizophrenia. Schizophr Res 67:75–85. \end{array}$
- Eastwood SL, Harrison PJ. 2005. Decreased expression of vesicular glutamate transporter 1 and complexin II mRNAs in schizophrenia: Further evidence for a synaptic pathology affecting glutamate neurons. Schizophr Res 73:159–172.
- Eastwood SL, Law AJ, Everall IP, Harrison PJ. 2003. The axonal chemorepellant semaphorin 3A is increased in the cerebellum in schizophrenia and may contribute to its synaptic pathology. Mol Psychiatry 8:148–155.
- Eisenberger NI, Lieberman MD, Williams KD. 2003. Does rejection hurt? An FMRI study of social exclusion. Science 302:290–292.
- Ekelund J, Lichtermann D, Hovatta I, Ellonen P, Suvisaari J, Terwilliger JD, et al. 2000. Genome-wide scan for schizophrenia in the Finnish population: Evidence for a locus on chromosome 7q22. Hum Mol Genet 9:1049–1057.
- Ekelund J, Hovatta I, Parker A, Paunio T, Varilo T, Martin R, et al. 2001. Chromosome 1 loci in Finnish schizophrenia families. Hum Mol Genet 10:1611–1617.
- Ekholm JM, Kieseppa T, Hiekkalinna T, Partonen T, Paunio T, Perola M, et al. 2003. Evidence of susceptibility loci on 4q32 and 16p12 for bipolar disorder. Hum Mol Genet 12:1907–1915.
- Erbel-Sieler C, et al. 2004. Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors. Proc Natl Acad Sci USA 101:13648–13653.
- Ewald H, Flint T, Kruse TA, Mors O. 2002. A genome-wide scan shows significant linkage between bipolar disorder and chromosome 12q24.3 and suggestive linkage to chromosomes 1p22-21, 4p16, 6q14-22, 10q26 and 16p13.3. Mol Psychiatry 7:734–744.
- Fallin MD, Lasseter VK, Wolyniec PS, McGrath JA, Nestadt G, Valle D, et al. 2003. Genomewide linkage scan for schizophrenia susceptibility loci among Ashkenazi Jewish families shows evidence of linkage on chromosome 10q22. Am J Hum Genet 73:601–611.
- Faraone SV, et al. 1998. Genome scan of European-American schizophrenia pedigrees: Results of the NIMH Genetics Initiative and Millennium Consortium. Am J Med Genet 81:290–295.
- Faraone SV, Matise T, Svrakic D, Pepple J, Malaspina D, Suarez B, et al. 1998. Genome scan of European-American schizophrenia pedigrees: Results of the NIMH Genetics Initiative and Millennium Consortium. Am J Med Genet 81:290–295.
- Faraone S, Hwu HG, Lie CM, Chen WJ, Tsuang MM, Liu SK, Shieh MH, Hwang TJ, Ou-Yang WC, Chen CY, Chen CC, Lin JJ, Chou FH, Chueh CM, Liu WM, Hall MH, Su J, Van Eerdewegh P, Tsuang MT. 2006a. Genome scan of Han Chinese schizophrenia families from Taiwan: Confirmation of linkage to 10q22.3. Am J Psychiatry 163: 1760-1766.
- Faraone SV, Lasky-Su J, Glatt SJ, Van Eerdewegh P, Tsuang MT. 2006b. Early onset bipolar disorder: Possible linkage to chromosome 9q34. Bipolar Disord 8:144–151.
- Fatemi SH, Laurence JA, Araghi-Niknam M, Stary JM, Schulz SC, Lee S, et al. 2004. Glial fibrillary acidic protein is reduced in cerebellum of subjects with major depression, but not schizophrenia. Schizophr Res 69:317–323.
- Fatemi SH, Pearce DA, Brooks AI, Sidwell RW. 2005a. Prenatal viral infection in mouse causes differential expression of genes in brains of mouse progeny: A potential animal model for schizophrenia and autism. Synapse 57:91–99.
- Fatemi SH, Snow AV, Stary JM, Araghi-Niknam M, Reutiman TJ, Lee S, et al. 2005b. Reelin signaling is impaired in autism. Biol Psychiatry 57:777–787.
- Fatemi SH, Stary JM, Earle JA, Araghi-Niknam M, Eagan E. 2005c. GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxylase 65 and 67 kDa and Reelin proteins in cerebellum. Schizophr Res 72:109–122.

- Flynn SW, Lang DJ, Mackay AL, Goghari V, Vavasour IM, Whittall KP, et al. 2003. Abnormalities of myelination in schizophrenia detected in vivo with MRI, and post-mortem with analysis of oligodendrocyte proteins. Mol Psychiatry 8:811–820.
- Foroud T, Edenberg HJ, Goate A, Rice J, Flury L, Koller DL, et al. 2000. Alcoholism susceptibility loci: Confirmation studies in a replicate sample and further mapping. Alcohol Clin Exp Res 24:933–945.
- Frederic F, Chianale C, Oliver C, Mariani J. 2006. Enhanced endocrine response to novel environment stress and lack of corticosterone circadian rhythm in staggerer (Rora sg/sg) mutant mice. J Neurosci Res 83:1525–1532.
- Freedman R, Leonard S, Olincy A, Kaufmann CA, Malaspina D, Cloninger CR, et al. 2001. Evidence for the multigenic inheritance of schizophrenia. Am J Med Genet 105:794–800.
- Galter D, Buervenich S, Carmine A, Anvret M, Olson L. 2003. ALDH1 mRNA: Presence in human dopamine neurons and decreases in substantia nigra in Parkinson's disease and in the ventral tegmental area in schizophrenia. Neurobiol Dis 14:637–647.
- Georgieva L, et al. 2006. Convergent evidence that oligodendrocyte lineage transcription factor 2 (OLIG2) and interacting genes influence susceptibility to schizophrenia. Proc Natl Acad Sci USA 103:12469– 12474.
- Geyer MA, Ellenbroek B. 2003. Animal behavior models of the mechanisms underlying antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry 27:1071–1079.
- Gisabella B, Bolshakov VY, Benes FM. 2005. Regulation of synaptic plasticity in a schizophrenia model. Proc Natl Acad Sci USA 102: 13301–13306.
- Glatt SJ, Everall IP, Kremen WS, Corbeil J, Sasik R, Khanlou N, et al. 2005. Comparative gene expression analysis of blood and brain provides concurrent validation of SELENBP1 up-regulation in schizophrenia. Proc Natl Acad Sci USA 102:15533–15538.
- Goldberg TE, et al. 2006. The G72/G30 gene complex and cognitive abnormalities in schizophrenia. Neuropsychopharmacology 31:2022-2032.
- Goldsmith SK, Shapiro RM, Joyce JN. 1997. Disrupted pattern of D2 dopamine receptors in the temporal lobe in schizophrenia. A postmortem study. Arch Gen Psychiatry 54:649–658.
- Golimbet VE, Aksenova MG, Nosikov VV, Orlova VA, Kaleda VG. 2003. Analysis of the linkage of the Taq1A and Taq1B loci of the dopamine D2 receptor gene with schizophrenia in patients and their siblings. Neurosci Behav Physiol 33:223–225.
- Gong X, Jia M, Ruan Y, Shuang M, Liu J, Wu S, et al. 2004. Association between the FOXP2 gene and autistic disorder in Chinese population. Am J Med Genet B 127B:113–116.
- Goodman AB. 1998. Is transthyretin (TTR) disrupted by a trinucleotide repeat expansion in a schizophrenia kindred? Am J Med Genet 81:347–348.
- Guidotti A, Auta J, Davis JM, Di-Giorgi-Gerevini V, Dwivedi Y, Grayson DR, et al. 2000. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: A postmortem brain study. Arch Gen Psychiatry 57:1061–1069.
- Gupta DS, et al. 2005. Metabotropic glutamate receptor protein expression in the prefrontal cortex and striatum in schizophrenia. Synapse 57:123– 131.
- Gurling HM, Kalsi G, Brynjolfson J, Sigmundsson T, Sherrington R, Mankoo BS, et al. 2001. Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21-22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3-24 and 20q12.1-11.23. Am J Hum Genet 68:661-673.
- Hahn CG, et al. 2006. Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Nat Med 12:824– 828.
- Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD, et al. 2001. Genome-wide expression analysis reveals dysregulation of myelinationrelated genes in chronic schizophrenia. Proc Natl Acad Sci USA 98: 4746-4751.
- Hansen T, Hemmingsen RP, Wang AG, Olsen L, Timm S, Soeby K, et al. 2006. Apolipoprotein D is associated with long-term outcome in patients with schizophrenia. Pharmacogenomics J 6:120–125.
- Harrington MG, Fonteh AN, Biringer RG, Hühmer AFR, Cowan RP. 2006. Prostaglandin D synthase isoforms from cerebrospinal fluid vary with brain pathology. Dis Markers 22:73–81.

- Harrison PJ, Weinberger DR. 2005. Schizophrenia genes, gene expression, and neuropathology: On the matter of their convergence. Mol Psychiatry 10:40–68. image 5.
- Harrison PJ, Law AJ, Eastwood SL. 2003. Glutamate receptors and transporters in the hippocampus in schizophrenia. Ann NY Acad Sci 1003:94–101.
- Heckers S, Stone D, Walsh J, Shick J, Koul P, Benes FM. 2002. Differential hippocampal expression of glutamic acid decarboxylase 65 and 67 messenger RNA in bipolar disorder and schizophrenia. Arch Gen Psychiatry 59:521–529.
- Helbecque N, Abderrahamani A, Meylan L, Riederer B, Mooser V, Miklossy J, et al. 2003. Islet-brain1/C-Jun N-terminal kinase interacting protein-1 (IB1/JIP-1) promoter variant is associated with Alzheimer's disease. Mol Psychiatry 8:413–422.
- Hill SY, Shen S, Zezza N, Hoffman EK, Perlin M, Allan W. 2004. A genome wide search for alcoholism susceptibility genes. Am J Med Genet B 128B:102–113.
- Hiraoka A, Seiki K, Oda H, Eguchi N, Urade Y, Tominaga I, et al. 2001. Charge microheterogeneity of the beta-trace proteins (lipocalin-type prostaglandin D synthase) in the cerebrospinal fluid of patients with neurological disorders analyzed by capillary isoelectrofocusing. Electrophoresis 22:3433–3437.
- Hisama FM, Gruen JR, Choi J, Huseinovic M, Grigorenko EL, Pauls D, et al. 2001. Human GABA(B) receptor 1 gene: Eight novel sequence variants. Hum Mutat 17:349–350.
- Ho L, Guo Y, Spielman L, Petrescu O, Haroutunian V, Purohit D, et al. 2001. Altered expression of a-type but not b-type synapsin isoform in the brain of patients at high risk for Alzheimer's disease assessed by DNA microarray technique. Neurosci Lett 298:191–194.
- Hof PR. 2003. Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia. Biol Psychiatry 53:1075–1085.
- Hof PR, Haroutunian V, Copland C, Davis KL, Buxbaum JD. 2002. Molecular and cellular evidence for an oligodendrocyte abnormality in schizophrenia. Neurochem Res 27:1193–1200.
- Holt DJ, et al. 2005. Sustained activation of the hippocampus in response to fearful faces in schizophrenia. Biol Psychiatry 57:1011–1019.
- Hovatta I, Varilo T, Suvisaari J, Terwilliger JD, Ollikainen V, Arajarvi R, et al. 1999. A genomewide screen for schizophrenia genes in an isolated Finnish subpopulation, suggesting multiple susceptibility loci. Am J Hum Genet 65:1114–1124.
- Hwu HG, Lin MW, Lee PC, Lee SF, Ou-Yang WC, Liu CM. 2000. Evaluation of linkage of markers on chromosome 6p with schizophrenia in Taiwanese families. Am J Med Genet 96:74-78.
- Hyman SE, Fenton WS. 2003. Medicine. What are the right targets for psychopharmacology? Science 299:350-351.
- Impagnatiello F, Guidotti AR, Pesold C, Dwivedi Y, Caruncho H, Pisu MG, et al. 1998. A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci USA 95:15718–15723.
- Ishikawa M, Mizukami K, Iwakiri M, Hidaka S, Asada T. 2004. Immunohistochemical and immunoblot study of GABA(A) alpha1 and beta2/3 subunits in the prefrontal cortex of subjects with schizophrenia and bipolar disorder. Neurosci Res 50:77–84.
- Ishikawa M, Mizukami K, Iwakiri M, Asada T. 2005. Immunohistochemical and immunoblot analysis of gamma-aminobutyric acid B receptor in the prefrontal cortex of subjects with schizophrenia and bipolar disorder. Neurosci Lett 383:272–277.
- Iwamoto K, et al. 2004. Decreased expression of NEFH and PCP4/PEP19 in the prefrontal cortex of alcoholics. Neurosci Res 49:379–385.
- Janoueix-Lerosey I, Novikov E, Monteiro M, Gruel N, Schleiermacher G, Loriod B, et al. 2004. Gene expression profiling of 1p35-36 genes in neuroblastoma. Oncogene 23:5912–5922.
- Jentsch JD, Roth RH. 1999. The neuropsychopharmacology of phencyclidine: From NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20:201–225.
- Jin JK, Choi JK, Wasco W, Buxbaum JD, Kozlowski PB, Carp RI, et al. 2005. Expression of calsenilin in neurons and astrocytes in the Alzheimer's disease brain. Neuroreport 16:451–455.
- Johnston-Wilson NL, Sims CD, Hofmann JP, Anderson L, Shore AD, Torrey EF, et al. 2000. Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium. Mol Psychiatry 5:142–149.
- Kaiser S, et al. 2004. Phencyclidine-induced changes in rat cortical gene expression identified by microarray analysis: Implications for schizophrenia. Neurobiol Dis 16:220–235.

- Kamnasaran D, Muir WJ, Ferguson-Smith MA, Cox DW. 2003. Disruption of the neuronal PAS3 gene in a family affected with schizophrenia. J Med Genet 40:325–332.
- Katsel P, Davis KL, Haroutunian V. 2005a. Variations in myelin and oligodendrocyte-related gene expression across multiple brain regions in schizophrenia: A gene ontology study. Schizophr Res 79:157–173.
- Katsel P, Davis KL, Gorman JM, Haroutunian V. 2005b. Variations in differential gene expression patterns across multiple brain regions in schizophrenia. Schizophr Res 77:241–252.
- Kaufmann CA, Suarez B, Malaspina D, Pepple J, Svrakic D, Markel PD, et al. 1998. NIMH genetics initiative millenium schizophrenia consortium: Linkage analysis of African-American pedigrees. Am J Med Genet 81:282–289.
- Kelsoe JR, Spence MA, Loetscher E, Foguet M, Sadovnick AD, Remick RA, et al. 2001. A genome survey indicates a possible susceptibility locus for bipolar disorder on chromosome 22. Proc Natl Acad Sci USA 98:585–590.
- Kleiderlein JJ, et al. 1998. CCG repeats in cDNAs from human brain. Hum Genet 103:666–673.
- Knable MB, Hyde TM, Murray AM, Herman MM, Kleinman JE. 1996. A postmortem study of frontal cortical dopamine D1 receptors in schizophrenics, psychiatric controls, and normal controls. Biol Psychiatry 40:1191-1199.
- Konopaske GT, Sweet RA, Wu Q, Sampson A, Lewis DA. 2006. Regional specificity of chandelier neuron axon terminal alterations in schizophrenia. Neuroscience 138:189–196.
- Kremer I, et al. 2004. Placebo-controlled trial of lamotrigine added to conventional and atypical antipsychotics in schizophrenia. Biol Psychiatry 56:441-446.
- Kromkamp M, Uylings HB, Smidt MP, Hellemons AJ, Burbach JP, Kahn RS. 2003. Decreased thalamic expression of the homeobox gene DLX1 in psychosis. Arch Gen Psychiatry 60:869–874.
- Kubicki M, et al. 2005a. DTI and MTR abnormalities in schizophrenia: Analysis of white matter integrity. Neuroimage 26:1109–1118.
- Kubicki M, McCarley RW, Shenton ME. 2005b. Evidence for white matter abnormalities in schizophrenia. Curr Opin Psychiatry 18:121-134.
- Kuroki N, et al. 2006. Fornix integrity and hippocampal volume in male schizophrenic patients. Biol Psychiatry 60:22-31.
- Kurumaji A, Toru M. 1998. An increase in [3H] CGS21680 binding in the striatum of postmortem brains of chronic schizophrenics. Brain Res 808:320–323.
- Lahti RA, Cochrane EV, Roberts RC, Conley RR, Tamminga CA. 1998. [3H]Neurotensin receptor densities in human postmortem brain tissue obtained from normal and schizophrenic persons. An autoradiographic study. J Neural Transm 105:507–516.
- Lappalainen J, Kranzler HR, Petrakis I, Somberg LK, Page G, Krystal JH, et al. 2004. Confirmation and fine mapping of the chromosome 1 alcohol dependence risk locus. Mol Psychiatry 9:312–319.
- Lauer M, et al. 2005. Morphological abnormalities in nitric-oxide-synthasepositive striatal interneurons of schizophrenic patients. Neuropsychobiology 52:111–117.
- Lee HJ, Song JY, Kim JW, Jin SY, Hong MS, Park JK, et al. 2005. Association study of polymorphisms in synaptic vesicle-associated genes, SYN2 and CPLX2, with schizophrenia. Behav Brain Funct 1:15.
- Lerer B, Segman RH, Hamdan A, Kanyas K, Karni O, Kohn Y, et al. 2003. Genome scan of Arab Israeli families maps a schizophrenia susceptibility gene to chromosome 6q23 and supports a locus at chromosome 10q24. Mol Psychiatry 8:488–498.
- Levi A, Kohn Y, Kanyas K, Amann D, Pae CU, Hamdan A, et al. 2005. Fine mapping of a schizophrenia susceptibility locus at chromosome 6q23: Increased evidence for linkage and reduced linkage interval. Eur J Hum Genet 13:763–771.
- Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I, et al. 2003. Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. Am J Hum Genet 73:34–48.
- Lewis DA, Cruz D, Eggan S, Erickson S. 2004. Postnatal development of prefrontal inhibitory circuits and the pathophysiology of cognitive dysfunction in schizophrenia. Ann NY Acad Sci 1021:64–76.
- Lewohl JM, Wang L, Miles MF, Zhang L, Dodd PR, Harris RA. 2000. Gene expression in human alcoholism: Microarray analysis of frontal cortex. Alcohol Clin Exp Res 24:1873–1882.
- Lindenmayer JP, et al. 2004. Effects of atypical antipsychotics on the syndromal profile in treatment-resistant schizophrenia. J Clin Psychiatry 65:551–556.

- Lindholm E, Ekholm B, Shaw S, Jalonen P, Johansson G, Pettersson U, et al. 2001. A schizophrenia-susceptibility locus at 6q25, in one of the world's largest reported pedigrees. Am J Hum Genet 69:96–105.
- Liu J, Juo SH, Dewan A, Grunn A, Tong X, Brito M, et al. 2003. Evidence for a putative bipolar disorder locus on 2p13-16 and other potential loci on 4q31, 7q34, 8q13, 9q31, 10q21-24, 13q32, 14q21 and 17q11-12. Mol Psychiatry 8:333–342.
- Ma DQ, Whitehead PL, Menold MM, Martin ER, Ashley-Koch AE, Mei H, et al. 2005. Identification of significant association and gene-gene interaction of GABA receptor subunit genes in autism. Am J Hum Genet 77:377–388.
- Macgregor S, Visscher PM, Knott SA, Thomson P, Porteous DJ, Millar JK, et al. 2004. A genome scan and follow-up study identify a bipolar disorder susceptibility locus on chromosome 1q42. Mol Psychiatry 9: 1083–1090.
- Mahadik SP, Khan MM, Evans DR, Parikh VV. 2002. Elevated plasma level of apolipoprotein D in schizophrenia and its treatment and outcome. Schizophr Res 58:55–62.
- Makino C, Fujii Y, Kikuta R, Hirata N, Tani A, Shibata A, et al. 2003. Positive association of the AMPA receptor subunit GluR4 gene (GRIA4) haplotype with schizophrenia: Linkage disequilibrium mapping using SNPs evenly distributed across the gene region. Am J Med Genet B 116B:17-22.
- Martucci L, Wong AH, Trakalo J, Cate-Carter T, Wong GW, Macciardi FM, et al. 2003. N-methyl-D-aspartate receptor NR1 subunit gene (GRIN1) in schizophrenia: TDT and case-control analyses. Am J Med Genet B 119B:24–27.
- Mattai AA, et al. 2006. Sleep disturbances in childhood-onset schizophrenia. Schizophr Res 86:123–129.
- Mayfield RD, Lewohl JM, Dodd PR, Herlihy A, Liu J, Harris RA. 2002. Patterns of gene expression are altered in the frontal and motor cortices of human alcoholics. J Neurochem 81:802–813.
- Maziade M, et al. 2001. A search for specific and common susceptibility loci for schizophrenia and bipolar disorder: A linkage study in 13 target chromosomes. Mol Psychiatry 6:684–693.
- Maziade M, Bissonnette L, Rouillard E, Martinez M, Turgeon M, Charron L, et al. 1997. 6p24-22 region and major psychoses in the Eastern Quebec population. Le Groupe IREP. Am J Med Genet 74:311–318.
- Maziade M, Roy MA, Chagnon YC, Cliche D, Fournier JP, Montgrain N, et al. 2005. Shared and specific susceptibility loci for schizophrenia and bipolar disorder: A dense genome scan in Eastern Quebec families. Mol Psychiatry 10:486–499.
- McInnis MG, Dick DM, Willour VL, Avramopoulos D, MacKinnon DF, Simpson SG, et al. 2003. Genome-wide scan and conditional analysis in bipolar disorder: Evidence for genomic interaction in the National Institute of Mental Health genetics initiative bipolar pedigrees. Biol Psychiatry 54:1265-1273.
- Middleton FA, Pato CN, Gentile KL, McGann L, Brown AM, Trauzzi M, et al. 2005. Gene expression analysis of peripheral blood leukocytes from discordant sib-pairs with schizophrenia and bipolar disorder reveals points of convergence between genetic and functional genomic approaches. Am J Med Genet B 136B:12–25.
- Minzer K, Lee O, Hong JJ, Singer HS. 2004. Increased prefrontal D2 protein in Tourette syndrome: A postmortem analysis of frontal cortex and striatum. J Neurol Sci 219:55–61.
- Mirnics K, Middleton FA, Lewis DA, Levitt P. 2001a. Analysis of complex brain disorders with gene expression microarrays: Schizophrenia as a disease of the synapse. Trends Neurosci 24:479–486.
- Mirnics K, Middleton FA, Stanwood GD, Lewis DA, Levitt P. 2001b. Diseasespecific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol Psychiatry 6:293–301.
- Mirnics K, Levitt P, Lewis DA. 2006. Critical appraisal of DNA microarrays in psychiatric genomics. Biol Psychiatry 60:163–176.
- Mizukami K, Sasaki M, Ishikawa M, Iwakiri M, Hidaka S, Shiraishi H, et al. 2000. Immunohistochemical localization of gamma-aminobutyric acid(B) receptor in the hippocampus of subjects with schizophrenia. Neurosci Lett 283:101–104.
- Molnar M, Potkin SG, Bunney WE, Jones EG. 2003. MRNA expression patterns and distribution of white matter neurons in dorsolateral prefrontal cortex of depressed patients differ from those in schizophrenia patients. Biol Psychiatry 53:39–47.
- Morris DW, Rodgers A, McGhee KA, Schwaiger S, Scully P, Quinn J, et al. 2004. Confirming RGS4 as a susceptibility gene for schizophrenia. Am J Med Genet B 125B:50–53.

- Morris BJ, Cochran SM, Pratt JA. 2005. PCP: From pharmacology to modelling schizophrenia. Curr Opin Pharmacol 5:101–106.
- Morton AJ, Edwardson JM. 2001. Progressive depletion of complexin II in a transgenic mouse model of Huntington's disease. J Neurochem 76:166–172.
- Muhle R, Trentacoste SV, Rapin I. 2004. The genetics of autism. Pediatrics 113:e472-e486.
- Mundo E, Tharmalingham S, Neves-Pereira M, Dalton EJ, Macciardi F, Parikh SV, et al. 2003. Evidence that the N-methyl-D-aspartate subunit 1 receptor gene (GRIN1) confers susceptibility to bipolar disorder. Mol Psychiatry 8:241–245.
- Niculescu AB, III, et al. 2000. Identifying a series of candidate genes for mania and psychosis: A convergent functional genomics approach. Physiol Genomics 4:83-91.
- Niculescu AB, et al. 2006. PhenoChipping of psychotic disorders: A novel approach for deconstructing and quantitating psychiatric phenotypes. Am J Med Genet Part B 141B:653–662.
- Norton N, Williams HJ, Owen MJ. 2006. An update on the genetics of schizophrenia. Curr Opin Psychiatry 19:158–164.
- Novak G, Kim D, Seeman P, Tallerico T. 2002. Schizophrenia and Nogo: Elevated mRNA in cortex, and high prevalence of a homozygous CAA insert. Brain Res Mol Brain Res 107:183–189.
- Novak G, Seeman P, Tallerico T. 2006. Increased expression of calcium/ calmodulin-dependent protein kinase IIbeta in frontal cortex in schizophrenia and depression. Synapse 59:61–68.
- Nurnberger JI Jr, et al. 2004. A family study of alcohol dependence: Coaggregation of multiple disorders in relatives of alcohol-dependent probands. Arch Gen Psychiatry 61:1246-1256.
- Nurnberger JI Jr, Foroud T, Flury L, Su J, Meyer ET, Hu K, et al. 2001. Evidence for a locus on chromosome 1 that influences vulnerability to alcoholism and affective disorder. Am J Psychiatry 158:718–724.
- Ogden CA, Rich ME, Schork NJ, Paulus MP, Geyer MA, Lohr JB, et al. 2004. Candidate genes, pathways and mechanisms for bipolar (manicdepressive) and related disorders: An expanded convergent functional genomics approach. Mol Psychiatry 9:1007–1029.
- Ohnuma T, Augood SJ, Arai H, McKenna PJ, Emson PC. 1999. Measurement of GABAergic parameters in the prefrontal cortex in schizophrenia: Focus on GABA content, GABA(A) receptor alpha-1 subunit messenger RNA and human GABA transporter-1 (HGAT-1) messenger RNA expression. Neuroscience 93:441–448.
- Olypher AV, Klement D, Fenton AA. 2006. Cognitive disorganization in hippocampus: A physiological model of the disorganization in psychosis. J Neurosci 26:158–168.
- Ong JC, Brody SA, Large CH, Geyer MA. 2005. An investigation of the efficacy of mood stabilizers in rodent models of prepulse inhibition. J Pharmacol Exp Ther 315:1163-1171.
- Ouchi Y, Kubota Y, Kuramasu A, Watanabe T, Ito C. 2005. Gene expression profiling in whole cerebral cortices of phencyclidine- or methamphetamine-treated rats. Brain Res Mol Brain Res 140:142–149.
- Owen MJ, Williams NM, O'Donovan MC. 2004. The molecular genetics of schizophrenia: New findings promise new insights. Mol Psychiatry 9: 14–27.
- Pantazopoulos H, Stone D, Walsh J, Benes FM. 2004. Differences in the cellular distribution of D1 receptor mRNA in the hippocampus of bipolars and schizophrenics. Synapse 54:147–155.
- Park N, Juo SH, Cheng R, Liu J, Loth JE, Lilliston B, et al. 2004. Linkage analysis of psychosis in bipolar pedigrees suggests novel putative loci for bipolar disorder and shared susceptibility with schizophrenia. Mol Psychiatry 9:1091–1099.
- Parker G, et al. 2006. Omega-3 Fatty acids and mood disorders. Am J Psychiatry 163:969–978.
- Paschou P, et al. 2004. Indications of linkage and association of Gilles de la Tourette syndrome in two independent family samples: 17q25 is a putative susceptibility region. Am J Hum Genet 75:545–560.
- Paunio T, Tuulio-Henriksson A, Hiekkalinna T, Perola M, Varilo T, Partonen T, et al. 2004. Search for cognitive trait components of schizophrenia reveals a locus for verbal learning and memory on 4q and for visual working memory on 2q. Hum Mol Genet 13:1693–1702.
- Peet M, Stokes C. 2005. Omega-3 fatty acids in the treatment of psychiatric disorders. Drugs 65:1051–1059.
- Peirce TR, Bray NJ, Williams NM, Norton N, Moskvina V, Preece A, et al. 2006. Convergent evidence for 2',3'-cyclic nucleotide 3'-phosphodiesterase as a possible susceptibility gene for schizophrenia. Arch Gen Psychiatry 63:18–24.

- Petryshen TL, et al. 2005a. Support for involvement of neuregulin 1 in schizophrenia pathophysiology. Mol Psychiatry 10:366-374. 328.
- Petryshen TL, et al. 2005b. Genetic investigation of chromosome 5q GABAA receptor subunit genes in schizophrenia. Mol Psychiatry 10:1074–1088. 1057.
- Potkin SG, Basile VS, Jin Y, Masellis M, Badri F, Keator D, et al. 2003. D1 receptor alleles predict PET metabolic correlates of clinical response to clozapine. Mol Psychiatry 8:109–113.
- Qin W, et al. 2005a. A family-based association study of PLP1 and schizophrenia. Neurosci Lett 375:207–210.
- Qin S, Zhao X, Pan Y, Liu J, Feng G, Fu J, et al. 2005b. An association study of the N-methyl-D-aspartate receptor NR1 subunit gene (GRIN1) and NR2B subunit gene (GRIN2B) in schizophrenia with universal DNA microarray. Eur J Hum Genet 13:807–814.
- Qin W, Gao J, Xing Q, Yang J, Qian X, Li X, et al. 2005c. A family-based association study of PLP1 and schizophrenia. Neurosci Lett 375:207– 210.
- Qiu S, et al. 2006. Cognitive disruption and altered hippocampus synaptic function in Reelin haploinsufficient mice. Neurobiol Learn Mem 85:228– 242.
- Quackenbush J. 2003. Genomics. Microarrays—guilt by association. Science 302:240–241.
- Radhakrishna U, Senol S, Herken H, Gucuyener K, Gehrig C, Blouin JL, et al. 2001. An apparently dominant bipolar affective disorder (BPAD) locus on chromosome 20p11.2-q11.2 in a large Turkish pedigree. Eur J Hum Genet 9:39–44.
- Rajkowska G, Miguel-Hidalgo JJ, Makkos Z, Meltzer H, Overholser J, Stockmeier C. 2002. Layer-specific reductions in GFAP-reactive astroglia in the dorsolateral prefrontal cortex in schizophrenia. Schizophr Res 57:127–138.
- Reich T, Edenberg HJ, Goate A, Williams JT, Rice JP, Van Eerdewegh P, et al. 1998. Genome-wide search for genes affecting the risk for alcohol dependence. Am J Med Genet 81:207–215.
- Rodd ZA, et al. 2006. Candidate genes, pathways and mechanisms for alcoholism: An expanded convergent functional genomics approach. Pharmacogenomics J [Epub ahead of print].
- Rosler N, Wichart I, Jellinger KA. 2001. Ex vivo lumbar and post mortem ventricular cerebrospinal fluid substance P-immunoreactivity in Alzheimer's disease patients. Neurosci Lett 299:117–120.
- Rybakowski JK, Borkowska A, Czerski PM, Kapelski P, Dmitrzak-Weglarz M, Hauser J. 2005. An association study of dopamine receptors polymorphisms and the Wisconsin Card Sorting Test in schizophrenia. J Neural Transm 112:1575–1582.
- Salvati S, et al. 2004. Stimulation of myelin proteolipid protein gene expression by eicosapentaenoic acid in C6 glioma cells. Neurochem Int 44:331-338.
- Sander T, Schulz H, Saar K, Gennaro E, Riggio MC, Bianchi A, et al. 2000. Genome search for susceptibility loci of common idiopathic generalised epilepsies. Hum Mol Genet 9:1465–1472.
- Sanjuan J, Tolosa A, Gonzalez JC, Aguilar EJ, Perez-Tur J, Najera C, et al. 2006. Association between FOXP2 polymorphisms and schizophrenia with auditory hallucinations. Psychiatric genetics 16:67–72.
- Schindler KM, Pato MT, Dourado A, Macedo A, Azevedo MH, Kennedy JL, et al. 2002. Association and linkage disequilibrium between a functional polymorphism of the dopamine-2 receptor gene and schizophrenia in a genetically homogeneous Portuguese population. Mol Psychiatry 7: 1002–1005.
- Schuckit MA, Edenberg HJ, Kalmijn J, Flury L, Smith TL, Reich T, et al. 2001. A genome-wide search for genes that relate to a low level of response to alcohol. Alcohol Clin Exp Res 25:323–329.
- Schulze TG, et al. 2004. Loci on chromosomes 6q and 6p interact to increase susceptibility to bipolar affective disorder in the national institute of mental health genetics initiative pedigrees. Biol Psychiatry 56:18–23.
- Schulze TG, Chen YS, Badner JA, McInnis MG, DePaulo JR Jr, McMahon FJ. 2003. Additional, physically ordered markers increase linkage signal for bipolar disorder on chromosome 18q22. Biol Psychiatry 53:239– 243.
- Seeman P, Guan HC, Nobrega J, Jiwa D, Markstein R, Balk JH, et al. 1997. Dopamine D2-like sites in schizophrenia, but not in Alzheimer's, Huntington's, or control brains, for [3H]benzquinoline. Synapse 25: 137–146.

- Seeman P, Ko F, Tallerico T. 2005. Dopamine receptor contribution to the action of PCP, LSD and ketamine psychotomimetics. Mol Psychiatry 10:877-783.
- Segurado R, Detera-Wadleigh SD, Levinson DF, Lewis CM, Gill M, Nurnberger JI Jr, et al. 2003. Genome scan meta-analysis of schizophrenia and bipolar disorder, part III: Bipolar disorder. Am J Hum Genet 73:49-62.
- Shad MU, Muddasani S, Keshavan MS. 2006. Prefrontal subregions and dimensions of insight in first-episode schizophrenia—A pilot study. Psychiatry Res 146:35–42.
- Silverstone PH, Asghar SJ, O'Donnell T, Ulrich M, Hanstock CC. 2004. Lithium and valproate protect against dextro-amphetamine induced brain choline concentration changes in bipolar disorder patients. World J Biol Psychiatry 5:38-44.
- Sklar P, Pato MT, Kirby A, Petryshen TL, Medeiros H, Carvalho C, et al. 2004. Genome-wide scan in Portuguese Island families identifies 5q31-5q35 as a susceptibility locus for schizophrenia and psychosis. Mol Psychiatry 9:213–218.
- Smith RE, Haroutunian V, Davis KL, Meador-Woodruff JH. 2001. Vesicular glutamate transporter transcript expression in the thalamus in schizophrenia. Neuroreport 12:2885–2887.
- Smith KM, Bauer L, Fischer M, Barkley R, Navia BA. 2005. Identification and characterization of human NR4A2 polymorphisms in attention deficit hyperactivity disorder. Am J Med Genet B 133B:57–63.
- Snitz BE, et al. 2005. Lateral and medial hypofrontality in first-episode schizophrenia: Functional activity in a medication-naive state and effects of short-term atypical antipsychotic treatment. Am J Psychiatry 162:2322–2329.
- Sokolov BP, Jiang L, Trivedi NS, Aston C. 2003. Transcription profiling reveals mitochondrial, ubiquitin and signaling systems abnormalities in postmortem brains from subjects with a history of alcohol abuse or dependence. J Neurosci Res 72:756–767.
- Stadler F, Kolb G, Rubusch L, Baker SP, Jones EG, Akbarian S. 2005. Histone methylation at gene promoters is associated with developmental regulation and region-specific expression of ionotropic and metabotropic glutamate receptors in human brain. J Neurochem 94: 324–336.
- Straub RE, MacLean CJ, O'Neill FA, Walsh D, Kendler KS. 1997. Support for a possible schizophrenia vulnerability locus in region 5q22-31 in Irish families. Mol Psychiatry 2:148–155.
- Straub RE, MacLean CJ, Ma Y, Webb BT, Myakishev MV, Harris-Kerr C, et al. 2002. Genome-wide scans of three independent sets of 90 Irish multiplex schizophrenia families and follow-up of selected regions in all families provides evidence for multiple susceptibility genes. Mol Psychiatry 7:542–559.
- Sullivan GM, Hatterer JA, Herbert J, Chen X, Roose SP, Attia E, et al. 1999. Low levels of transthyretin in the CSF of depressed patients. Am J Psychiatry 156:710–715.
- Sun F, Cheng R, Flanders WD, Yang Q, Khoury MJ. 1999. Whole genome association studies for genes affecting alcohol dependence. Genet Epidemiol 17(Suppl 1):S337–S342.
- Suzuki T, Iwata N, Kitamura Y, Kitajima T, Yamanouchi Y, Ikeda M, et al. 2003. Association of a haplotype in the serotonin 5-HT4 receptor gene (HTR4) with Japanese schizophrenia. Am J Med Genet B 121B:7–13.
- Swatton JE, Sellers LA, Faull RL, Holland A, Iritani S, Bahn S. 2004. Increased MAP kinase activity in Alzheimer's and Down syndrome but not in schizophrenia human brain. Eur J Neurosci 19:2711–2719.
- Symond MP, Harris AW, Gordon E, Williams LM. 2005. "Gamma synchrony" in first-episode schizophrenia: A disorder of temporal connectivity? Am J Psychiatry 162:459–465.
- Sze CI, Bi H, Kleinschmidt-DeMasters BK, Filley CM, Martin LJ. 2000. Selective regional loss of exocytotic presynaptic vesicle proteins in Alzheimer's disease brains. J Neurol Sci 175:81–90.
- Tachiki KH, Kurtz N, Kling AS, Hullett FJ. 1984. Blood monoamine oxidases and CT scans in subgroups of chronic schizophrenics. J Psychiatr Res 18:233–243.
- Takahashi S, Cui YH, Kojima T, Han YH, Zhou RL, Kamioka M, et al. 2003. Family-based association study of markers on chromosome 22 in schizophrenia using African-American, European-American, and Chinese families. Am J Med Genet B 120B:11–17.
- Talkowski ME, et al. 2006. Evaluation of a susceptibility gene for schizophrenia: Genotype based meta-analysis of RGS4 polymorphisms from thirteen independent samples. Biol Psychiatry 60:152–162.

- Tamagaki C, et al. 2005. Altered white matter/gray matter proportions in the striatum of patients with schizophrenia: A volumetric MRI study. Am J Psychiatry 162:2315–2321.
- Tan EC, Chong SA, Wang H, Chew-Ping Lim E, Teo YY. 2005. Genderspecific association of insertion/deletion polymorphisms in the nogo gene and chronic schizophrenia. Brain Res Mol Brain Res 139:212–216.
- Tanabe J, Tregellas JR, Martin LF, Freedman R. 2006. Effects of nicotine on hippocampal and cingulate activity during smooth pursuit eye movement in schizophrenia. Biol Psychiatry 59:754–761.
- Tandon R, Fleischhacker WW. 2005. Comparative efficacy of antipsychotics in the treatment of schizophrenia: A critical assessment. Schizophr Res 79:145–155.
- Thomas EA, Dean B, Pavey G, Sutcliffe JG. 2001. Increased CNS levels of apolipoprotein D in schizophrenic and bipolar subjects: Implications for the pathophysiology of psychiatric disorders. Proc Natl Acad Sci USA 98:4066–4071.
- Thomas EA, Dean B, Scarr E, Copolov D, Sutcliffe JG. 2003. Differences in neuroanatomical sites of apoD elevation discriminate between schizophrenia and bipolar disorder. Mol Psychiatry 8:167–175.
- Thomson PA, et al. 2006. Association of Neuregulin 1 with schizophrenia and bipolar disorder in a second cohort from the Scottish population. Mol Psychiatry [Epub ahead of print].
- Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB, et al. 2003. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 362:798–805.
- Todtenkopf MS, Benes FM. 1998. Distribution of glutamate decarboxylase65 immunoreactive puncta on pyramidal and nonpyramidal neurons in hippocampus of schizophrenic brain. Synapse 29:323–332.
- Tooney PA, Crawter VC, Chahl LA. 2001. Increased tachykinin NK(1) receptor immunoreactivity in the prefrontal cortex in schizophrenia. Biol Psychiatry 49:523–527.
- Torrey EF, et al. 2005. Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains. Biol Psychiatry 57:252–260.
- Toru M. 1998. Biological research on schizophrenia. Psychiatry Clin Neurosci 52(Suppl):S170-S172.
- Turecki G, Grof P, Grof E, D'Souza V, Lebuis L, Marineau C, et al. 2001. Mapping susceptibility genes for bipolar disorder: A pharmacogenetic approach based on excellent response to lithium. Mol Psychiatry 6:570– 578.
- Turgeon SM, Case LC. 2001. The effects of phencyclidine pretreatment on amphetamine-induced behavior and c-Fos expression in the rat. Brain Res 888:302–305.
- Vawter MP, et al. 2006. Mitochondrial-related gene expression changes are sensitive to agonal-pH state: Implications for brain disorders. Mol Psychiatry 11:663–679.
- Vawter MP, Crook JM, Hyde TM, Kleinman JE, Weinberger DR, Becker KG, et al. 2002a. Microarray analysis of gene expression in the prefrontal cortex in schizophrenia: A preliminary study. Schizophr Res 58:11–20.
- Vawter MP, Thatcher L, Usen N, Hyde TM, Kleinman JE, Freed WJ. 2002b. Reduction of synapsin in the hippocampus of patients with bipolar disorder and schizophrenia. Mol Psychiatry 7:571–578.
- Vawter MP, Ferran E, Galke B, Cooper K, Bunney WE, Byerley W. 2004. Microarray screening of lymphocyte gene expression differences in a multiplex schizophrenia pedigree. Schizophr Res 67:41–52.
- Venken T, Claes S, Sluijs S, Paterson AD, van Duijn C, Adolfsson R, et al. 2005. Genomewide scan for affective disorder susceptibility Loci in families of a northern Swedish isolated population. Am J Hum Genet 76:237–248.
- Venturin M, Moncini S, Villa V, Russo S, Bonati MT, Larizza L, et al. 2006. Mutations and novel polymorphisms in coding regions and UTRs of CDK5R1 and OMG genes in patients with non-syndromic mental retardation. Neurogenetics 7:59-66.
- Vida I, Bartos M, Jonas P. 2006. Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron 49:107–117.
- Vincent JB, Paterson AD, Strong E, Petronis A, Kennedy JL. 2000. The unstable trinucleotide repeat story of major psychosis. Am J Med Genet 97:77–97.

- Vita A, De Peri L, Silenzi C, Dieci M. 2006. Brain morphology in first-episode schizophrenia: A meta-analysis of quantitative magnetic resonance imaging studies. Schizophr Res 82:75–88.
- Vondracek P, Seeman P, Hermanova M, Fajkusova L. 2005. X-linked Charcot-Marie-Tooth disease: Phenotypic expression of a novel mutation Ile127Ser in the GJB1 (connexin 32) gene. Muscle Nerve 31:252–255.
- Wang J, Si YM, Liu ZL, Yu L. 2003. Cholecystokinin, cholecystokinin-A receptor and cholecystokinin-B receptor gene polymorphisms in Parkinson's disease. Pharmacogenetics 13:365–369.
- Wang DS, Bennett DA, Mufson EJ, Mattila P, Cochran E, Dickson DW. 2004. Contribution of changes in ubiquitin and myelin basic protein to agerelated cognitive decline. Neurosci Res 48:93–100.
- Webster MJ, O'Grady J, Kleinman JE, Weickert CS. 2005. Glial fibrillary acidic protein mRNA levels in the cingulate cortex of individuals with depression, bipolar disorder and schizophrenia. Neuroscience 133:453– 461.
- Whitfield CW, Cziko AM, Robinson GE. 2003. Gene expression profiles in the brain predict behavior in individual honey bees. Science 302:296–299.
- Williams NM, Norton N, Williams H, Ekholm B, Hamshere ML, Lindblom Y, et al. 2003. A systematic genomewide linkage study in 353 sib pairs with schizophrenia. Am J Hum Genet 73:1355–1367.
- Willour VL, Zandi PP, Huo Y, Diggs TL, Chellis JL, MacKinnon DF, et al. 2003. Genome scan of the fifty-six bipolar pedigrees from the NIMH genetics initiative replication sample: Chromosomes 4, 7, 9, 18, 19, 20, and 21. Am J Med Genet B 121B:21–27.
- Wolf SS, Hyde TM, Saunders RC, Herman MM, Weinberger DR, Kleinman JE. 1995. Autoradiographic characterization of neurotensin receptors in the entorhinal cortex of schizophrenic patients and control subjects. J Neural Transm Gen Sect 102:55–65.
- Wong ML, et al. 2004. St John's wort and imipramine-induced gene expression profiles identify cellular functions relevant to antidepressant action and novel pharmacogenetic candidates for the phenotype of antidepressant treatment response. Mol Psychiatry 9:237–251.
- Wynn JK, Light GA, Breitmeyer B, Nuechterlein KH, Green MF. 2005. Event-related gamma activity in schizophrenia patients during a visual backward-masking task. Am J Psychiatry 162:2330–2336.
- Wyszynski DF, Panhuysen CI, Ma Q, Yip AG, Wilcox M, Erlich P, et al. 2003. Genome-wide screen for heavy alcohol consumption. BMC Genet 4(Suppl 1):S106.
- Yamada K, Iwayama-Shigeno Y, Yoshida Y, Toyota T, Itokawa M, Hattori E, et al. 2004. Family-based association study of schizophrenia with 444 markers and analysis of a new susceptibility locus mapped to 11q13.3. Am J Med Genet B 127B:11–19.
- Yan WL, Guan XY, Green ED, Nicolson R, Yap TK, Zhang J, et al. 2000. Childhood-onset schizophrenia/autistic disorder and t(1;7) reciprocal translocation: Identification of a BAC contig spanning the translocation breakpoint at 7q21. Am J Med Genet 96:749–753.
- Yao JK, Thomas EA, Reddy RD, Keshavan MS. 2005. Association of plasma apolipoproteins D with RBC membrane arachidonic acid levels in schizophrenia. Schizophr Res 72:259–266.
- Yoshinaga T, Takei Y, Katayanagi K, Ikeda S. 2004. Postmortem findings in a familial amyloid polyneuropathy patient with homozygosity of the mutant Val30Met transthyretin gene. Amyloid 11:56–60.
- Zachrisson O, de Belleroche J, Wendt KR, Hirsch S, Lindefors N. 1999. Cholecystokinin CCK(B) receptor mRNA isoforms: Expression in schizophrenic brains. Neuroreport 10:3265-3268.
- Zai G, et al. 2005a. Evidence for the gamma-amino-butyric acid type B receptor 1 (GABBR1) gene as a susceptibility factor in obsessivecompulsive disorder. Am J Med Genet Part B 134B:25–29.
- Zai G, King N, Wong GW, Barr CL, Kennedy JL. 2005. Possible association between the gamma-aminobutyric acid type B receptor 1 (GABBR1) gene and schizophrenia. Eur Neuropsychopharmacol 15:347–352.
- Zanarini MC, Frankenburg FR. 2003. Omega-3 Fatty acid treatment of women with borderline personality disorder: A double-blind, placebocontrolled pilot study. Am J Psychiatry 160:167–169.
- Zvara A, Szekeres G, Janka Z, Kelemen JZ, Cimmer C, Santha M, et al. 2005. Over-expression of dopamine D2 receptor and inwardly rectifying potassium channel genes in drug-naive schizophrenic peripheral blood lymphocytes as potential diagnostic markers. Dis Markers 21:61–69.